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1.  INTRODDCTION 

The flowing medium in a gun tube typically is a mixture of a 
compressible gas with burning solid propellant grains. Details of the flow 
are important for weapons development, but only bulk properties can be 
routinely measured, such as the trajectory of the projectile, the pressure 
history at a fixed station, the heating of the gun tube, etc. Therefore, a 
need exists for a detailed mathematical model of interior ballistics two- 

phase flows. 

A complete mathematical description of the flow could provide the 
motion and combustion history of each propellant grain and of the gas flow 
between the grains. The corresponding local governing equations are easily 
established, but they cannot be solved numerically because of the great 
number of grid points needed to describe a flow with many moving 
interfaces. The computational work can be reduced only be sacrificing the 
detailed description of the flow. To that end one considers mean values of 
the two-phase flow that are derived from the local properties of the gas and 
grains. The governing equations for these average properties are 
established by averaging the local governing equations. 

This report presents a complete and consistent mathematical model of 
three-dimensional, transient interior ballistics (gas-solid) phenomena in 
which the total effects of the gas phase viscosity, turbulence, and heat 
conduction on the average variables are included. In contrast, most 
existing models neglect viscous and heat conduction effects, and, thus, can 
characterize only the wave propagation in a two-phase flow. The theory of 
the model is complete and consistent in that all the averaged variables, 
equations, initial and boundary conditions, regions of definition of the 
variables and correlations are precisely defined and derived using the same 
averaging. The need for such an approach is due to the complexity of the 
multiphase, multidimensional viscous flow field and a lack of detailed 
experimental data. Uhder such conditions, models formulated on 
phenoraenological arguments are often unreliable. Also a phenomenological 
derivation seldom provides precise error bounds. A theoretically derived 
model permits one to investigate with more confidence ballistic processes 
that cannot be observed in detail because error bounds are precisely 
formulated and can be tested. Furthermore, a careful mathematical 
derivation of the model can reveal restrictions on the model itself. The 
presented mathematical model possesses the following features: (I) The 
averaging process insures a sufficient differentiability of the average 
variables so that the governing partial differential equations are 
defined. (2) Appropriate averages are used for quantities that are defined 
over volume and for those that are defined over a surface. (3) The regions 
of definition of the average variables are given. (4) The necessary 
auxiliary conditions to the governing equations, e.g., initial conditions 
and boundary conditions, are consistent with the averaging process used to 
derive the governing equations.  (5) Terms that are modeled by correlations 
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possess simple physical Interpretations. Estimates are given for the 
difference between the theoretical definitions of the correlations and the 
expressions actually used. (6) Whenever the contribution of a term Is 
neglected In an equation, a corresponding error term Is established. (7) 
Because the equations are to be solved numerically, attention Is given to an 
appropriate form for numerical solution. (8) The model represents a two- 
phase (gas-solid) flow In which the solid ignites and burns, and it also 
simulates other phenomena which occur in a viscous, heat conducting Interior 
ballistic flow. 

Previous work on two-phase equations for interior ballistics has been 
done by Gough, Kuo et al,, Fisher and Trippe, and Krier et al. The 
primary purpose of these works was the investigation of the wave propagation 
within the gun tube during the early phases of the interior ballistic 
phenomenon. Cough's equations were later augmented to include gas-phase 
viscosity and heat conduction, and used in a computer program developed by 
Gibeling et al. Our equations are different because we have used a 
different averaging process, chosen a different set of dependent variables, 
and changed some correlation models that provide experimental input to the 
theory. Furthermore, our approach differs from the ones mentioned above 
because it is based solely on a consistent mathematical theory. 

The averages in this report are computed by weighted averaging over a 
finite volume. Gough used Instead a weighted averaging over an infinite 
space-time domain with an unspecified weight function. The rationale of our 
choice is based on the observation that any averaging smooths out local 
details.  In order not to lose too many details, one should, therefore, use 

P.S. Gough, "The Flow of a Compressible Gas Through an Aggregate of Mobile, 
Reacting Particles," Ph.D. Thesis, Department of Mechanical Engineering, 
MaGill University, Montreal,   1974. 

K.K. Kuo, J.H. Koo, T.R. Davis, and G.R. Coates, "Transient Combustion in 
Mobile, Gas-Permeable Propellants," Acta. Astron.. Vol. 3, No. 7-8, pp. 
574-591,   1976. 

3 E.B.   Fisher and A.P.   Trippe,   "Mathematical Model of Center Core Ignition in 
the 175rm Gun," Calspan Report VQ-5163-D-2,  1974. 

H. Krier, W.F. van Tassell, S. Baj'an, and J. Vershaw, "Model of 
Flamespreading and Combustion Through Packed Beds of Propellant Grains," 
University of Illinois at Urbana-Champaign Report,   TR-AAE-74-1,   1974. 

H.J. Gibeling, R.C. Buggeln, and H. McDonald, "Development of a Two- 
Dimensional Implicit Interior Ballistics Code," USA ARDC AMCCOM/Ballistic 
Research Laboratory Contractor Report, ARBRL-CR-00411, APG, MD, January 
1980,  AD No.  AD 387 458. 
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the smallest averaging domain that is compatible with the requirements of 
the problem at hand.  One requirement of the averages is that they should be 
differentiable as many times as the ensuing governing equations indicate. 
It has been shown by Delhaye and Achard that line or surface averages of a 
gas/particle mixture do not possess the required differentiability 
properties.   Therefore,  the smallest domain for averaging is a three- 
dimensional   volume.      Time  averaging   is   not   needed  to  insure 
differentiability, if the weight function for space averaging is chosen 
properly (see Section 2.2).  If one, nevertheless, chooses to time average, 
then the time average interval would have to be very small because we are 
interested in an accurate characterization of a rapidly changing flow field. 

The size of the averaging volume is important. The use of an infinite 
volume for averaging is not appropriate in confined flows because for such a 
volume the sum of the volume fractions of the two phases is not equal to 
one. This creates problems for the formulation of the governing equations 
and the boundary conditions, and for the interpretation of the results. The 
problem with the formulation of the equations is eliminated by using an 
appropriate finite volume average, while the others become more easily 
tractable. We discuss the problems in Sections 4.4 and 4.6. If the weight 
function in any infinite volume average is zero outside some finite distance 
from the point at which the average is taken, then the resulting average is 
obviously equivalent to a finite volume average. If the value of the weight 
function is zero outside some distance which depends on the location of the 
point at which the average is taken, then the resulting average is 
equivalent to a variable finite volume average. In this type of average 
additional terms in the partial differential equations for the average 
quantities appear that represent the effects of the change of the averaging 
volume in time and space. This complication is avoided in the present 
report by restricting the attention to a fixed finite volume average with a 
fixed weight function. 

The average equations which are derived in Section 3 include the 
effects of gas viscosity and of turbulence. Furthermore, the choice of 
equations for averaging and the choice of dependent variables has a bearing 
on the numerical solution of the equations. We have chosen a set of 
variables that eliminates some possible numerical singularities, enhances 
the accuracy of numerical differentiation, and separates important physical 
processes for easier modeling. The choice of variables is discussed in 
Section 4.2.  We also have chosen the internal energy equation for averaging 

J.M.   Delhaye   and J.L.   Aahard,    "On   the   Use   of Averaging  Operator's   in  Tao- 
Phase Modeling}' in Thermal and Hydraulic; Aspects of flualms  Rear.tnr Snfp.ty, 
Vol.   1:   Light  Water ReaotorBt O.C.  Jones and S.G.   Bankoff,   eds,,   pp.   289- 
S32,  ASME,   New York,   1977. 
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Instead of the commonly used total energy equation. The reasons for this 

choice are that it produces a clear separation of physical effects and a 

more lucid modeling of two-phase phenomena. They are discussed in Sections 

3.2.3 and 4.7.3, respectively. As a result of the consideration of viscous 

effects and the choice of equations and variables, our governing equations 

diffe:- from those derived by Gough. Each set of equations has different 
appro<imation errors and some of the required models of experimental 
correlations are different. 

The experimental correlations in interior ballistics are characterized 
by a scarcity of data. This is one reason why corresponding mathematical 

models have not been firmly established. In Section 4.7 we list a set of 

correlations, most of which are included in Cough's work. Some improvements 
and changes reflect the difference of our approach. 

Even with the reduction of the problem size by the change from local to 

average functions, one is faced with a formidable numerical problem. 

Typically, in a two-phase flow one has a set of eleven non-linear partial 

differential equations. (Up to thirteen equations if a turbulence model is 

included). In order to describe the three-dimensional flow in reasonable 
detail one has to specify the eleven variables at a minimum of about 54,000 

grid points. If the flow is specialized to axially symmetric, then the 

number of grid points may be reduced to about 1,500. Therefore, one should 

exploit the axial symmetry of the gun whenever possible. The proper 

coordinates for flows with axial symmetry are cylindrical coordinates. 

Therefore, we have listed in Appendix A all equations in cylindrical 

coordinates for flows that are independent of the circumferential 
coordinate. 

2.  ANALYTICAL BASIS 

2.1  Assumptions 

In the next three Sections (2.2, 2.3, and 2.4) we shall discuss some 

properties of averaged functions and develop general formulas that are 
needed for the derivations in Section 3. The averages to be discussed are 

weighted space averages over a finite averaging volume. We do not try to 

establish general properties of such averages but rather concentrate on what 

is needed for a specific interior ballistics modeling. For that 

application, the quantities to be averaged are the local properties of a gas 

and of propellant particles within the averaging volume. We assume that no 
other material is present in the tube. 

The gas is assumed to be non-reacting and obeying a set of algebraic 

equations of state  that permits one to express all thermodynamic variables 

in terms of two such quantities.  The particular set of equations of state 

considered are the Noble-Abel equation and a constant ratio of specific heats, 
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However, most of the results are Independent of the particular set of 
equations of state chosen. 

We will assume that the gas is viscous and in a state without shocks 
within the averaging volume. Ihis is necessary to have average equations 
with the proper differentiability conditions. Particular differentiability 
conditions of the local gas properties will be enumerated in Section 2.2. 

If shocks are present in the gas flow, then one could average only over 
the shock free regions and treat the shocks as explicit boundaries. 
However, this approach has serious drawbacks because of the uncertainty of 
the corresponding boundary conditions (see Section 4.6). Space or time 
averaging is not the appropriate technique for the treatment of interior 
ballistics flows with shocks or other internal discontinuities. 

The propellant particles are assumed to be incompressible and 
elastic. We shall neglect all effects of the rotation of the solid 
particles, and shall assume that the grains do not fracture. like in the 
gas, the local material properties within and on the surface of each 
particle are assumed to be differentiable functions of time and space. 
Particulars of the differentiability conditions will be enumerated in 
Section 2.2. 

2.2  Averaging Integrals and Their Derivatives 

2.2.1 Averaging Volume Integrals. We define the averaging volume V(x) 
as the inside of a closed surface S(x). Both are independent of time and 
dependent on a spacial coordinate vector x as a parameter. For instance, if 
V(x) is a sphere, then x may be chosen as the center of the sphere. About 
the surface S(x), we assume that it has a well defined normal almost 
everywhere. The shape and the size of the averaging volume are assumed to 
be constant. 

The particles are defined by corresponding surfaces, s  ..      Because the 
particles are moving and burning, the s ^ are functions of time, but they 
are independent of the parametric coordinate vector x.  We assume that the 
particle surfaces, too, have well defined normals almost everywhere.  We 
define as S  the union of all those particle surfaces s , that are within 
the averaging volume V,  including its surface  Sv.   Accordingly,  the 
intersection S f] S  can have a finite area.  Most often, the area of the p   v 
intersection will be zero (Figure 1). 

All averages will be defined by integrals over the space occupied 
either by gas or by particles. In order to have a convenient notation for 
the corresponding integrals, we define a phasic function P as follows 
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FINITE AREA 
NTERSECTION 

OF Sy AND Sp 

s.J   ZERO AREA 
>■.;•./ INTERSECTION 

^v   OFSvANDSp 

(t.U = 

Figure 1.  Averaging Volume 

0 if 5 is inside a particle at time t (2.1) 

1 if 5 is outside particles or on a particle surface at 
t ime t. 

We will also use a non-negative weight function g for the calculation of 
averages.  let 

VG = /  g(C-x) dV(0 = constant 
V(x) 

(2.2) 

be the Integral of the weight function ("the weighted averaging volume") 
Ihen the weighted volume fraction occupied by gas is 

a(t,x) = 
VG 

gas 

/   g(5-x) dV(5) 
(t.x) VG 

10 

/  6(t,U g(?-x) dV(0 
V(x) (2.3) 
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The intrinsic average <})(t,x) of a function ^(t,x) that is defined in the 
regions occupied by gas is defined by 

a(t,x) (f.(t,x) = —   / 
VG g(C-x) (|)(t,0 dV(C) 

gas(t,x) 

(2.4) 

-^ / 6(t,0 g(5-x) £(t,0 dv(0 
VG V(x) 

Notice that, whereas ^(t,x) is defined only within regions occupied by gas, 
the average <()(t,x) is defined for all values of x (within limits outlined in 
Section 2.3). 

A corresponding average (}i(t,x) of a function (j)(t,x) that is defined 
only inside the particles is given by 

[l-^(t,x)]|t(t.x) = ^- /   [l-e(t.O]ga-xH(t,OdVU) 
VG V(x) 

(2.5) 

Sufficient conditions for the existence of the average function are thes. 
piecewise continuity with respect to x of the functions (}i(t,x) and (j)(t,x) 
within their regions of definition.  Obviously, the average of any function 
of time only is the function itself. 

2.2.2 Ttne Derivative of Voluae Integrals. The averaging integrals 
(2.3), (2.4), and (2.5) define functions of t and x. In this section we 
formulate differentiability conditions of the average functions with respect 
to time t. 

Applying leibnitz fornula (Truesdell and Toupin)  to an averaging 
integral (2.4) over V^,, we obtain gab 

C.  Truesdell and R.  Toupin,   "The Claesiaal Field Theories, " in Enayalopedia 
of Physios,  S.   Flugge,   ed..   Vol. III/l,   Springer-Verlag,  1960. 

11 
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|-    /   Mt.x.O dV(0 -    /   |-[^(t,x,0] dV(C) 
dt V  (t.x) V  (t,x)dt 

or 
S (t.x) 8P 8P     (2.6) 

9_ 
at /   e(t,o ^(t.x.s) dv(o 

V(x) 

= J  e|-^dV(U+  /     *(t,x,5(5)) (u 'n ) dSCO 
V(x) 3t S (t.x) Sp SP 

where u  is the velocity of a point of S„ and n0_ is the outward unit sp ^      r        p      sp 
normal of S  at the same point.  (The "outward" normal points by definition 
into the grains, Figure 1.)  The surface integral is only over S- and not 
over Sv because the latter surface is assumed to be stationary. 

The first integral on the right-hand side of Eq. (2.6) exists and is a 
continuous function of x and t if 8\()/8t is a continuous function of x and t 
and a piecewise continuous function of £. The surface integral over Sp in 
Eq. (2.6) exists if the surface velocity is finite. However, the area of 
the surface S has discontinuities with respect to x and, possibly, with 
respect to t, whenever the intersection S D Sv has a finite area. 
Therefore, the surface integral is a continuous function of x and t only if 

\|; = 0 on Sv. 

Because in our case 

Mt,x,5) " g(5-x) £(t,0  , (2.7) 

we may formulate the following sufficient conditions for the continuity of 
the time derivative of the averaging integral in terms of g and $ : 

*}. is continuous with respect 
a t 

to t and piecewise continuous 
with respect to 5 in the domain 
of definition of ^ , 

g(5-x) is continuous in V, } (2.8) 

g(5-x) =0 on the surface S . 

12 
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If 4) denotes a gas phase local variable, then the first condition in Eq. 
(2.8) applies only when (5,t) designates a point in the gas phase.  If 
5» denotes a solid phase local variable, then the first condition in Kq. 
(2.8) applies only when (C,t) designates a point in the solid phase. 

The differentiation formula (2.6) is in terms of g and (j) 

/ 3g ^a^'0 dVU) = |r / Bg? dV - / g? (u • n ) dS  .    (2.9) 
V 3t dt    V S     sp  sp 

P 
* 

The corresponding formula for functions (j) that are defined within the 
solid grains is 

/ (1-3) g||- dV -|- / (1-6) gj dV +/ g^   (u -n ) dS  .   (2.10) 
V <3t V S      spsp 

In the  latter formula,  the surface  normal  n   again points  into the 
grains.  Because now we are integrating over the inside of the grains, the 
sign of  the last  integral in Eq.  (2.10) is opposite to that of the 
corresponding integral in Eq. (2.9). 

2.2.3  Spadal Derivatives of Volune Integrals.  Applying Leibnitz type 
formula to an averaging integral (2.4) over V   one obtains 

V /  3(t,C) iKt,x,0 dV(0 =/ 0 V O-dV + / i|m dS +  J  ♦n ds 
x V(x) V   X     S -S S    S  S   8p v p      v p 

(2.11) 

o 
Gauss theorem (Fulks p. 354) applied to the same integration volume is 

/ 6 7 WV 
V   ^ 

/ * n dS + / * n dS 
^    s ■'so 

S -S S     v 

v p p 

(2.12) 

We note that ty and $ aould he saalavs, vectorst ov second order tensors. 
For example, if if.' is a vector, dots signifying the divergence of ty and th& 

dot product of i' should he used in Eq. (2.11). For simplicity, the use of 
dots is oir\itted in Section 2 wherever ty and $ are not specified. The 
understood presence or absence of a dot should he clear form the context. 

8 W.   Fulks,   Advanced Calculus.   2nd Ed.,   John Wiley and Sons,   Inc.,   New York, 
1969. 

13 
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Subtracting Eq. (2.12) from Eq. (2.11) one obtains 

7 / 5 I|J dV - / 3 (V + V H dV - / i^n dS +  J i|m dS  .   (2.13) 
x v v   x  5     s  8P   S ns     sp 

P        P v 

Sufficient conditions for the continuity of the right-hand side of Eq, 
(2.13) are 

(V + ^r ) 'Mt,x,C)  is continuous with respect to 
x and t, and piecewise continuous 
with respect to %  in the domain 
of definition of ip. 

(2.14) 
ip «= 0 on sv 

In our application we want some of the average functions to be 
dif ferentlable |;wice with respect to the spacial variables. By a formal 
differentiation of Eq. (2.13) we obtain, assuming that i|) - 0 on Sv, 

V V  f  3^dV - V / 0(V + V )il) dV - V  f  ^n dS  . (2.15) x x J
v  

TT    x J
v   x   g T      x J

s 
r sp 

' P 

Next, we apply the formula (2.13) to the first integral on the right-hand 
side of Eq. (2.p) obtaining 

V / & (7  + V )i|; dV = / 3 (V + V^ ) (V + Vr )i|» dV x J
v   x 

i  C       ;
v   x   E. x   5 T 

(2.16) 

- J (V +Vr)^n dS + /  (V + V_)tt»n  dS J
s  x   5  sp    s

J
ns  ^   ?  ^ 

p pM v 

The surface integral in (2.15) is 

V J ijm dS - / V i|) n  dS  . (2.17) x ■'g r sp    '   xr sp 
P P 

Sufficient continuity conditions for (2.16) are 

14 
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Is piecewise continuous with respect to 
^, and continuous with respect to t 
and x in the domain of definition of \JJ . 

on S, 

(2.18) 

Sufficient for the continuity of (2.17) is that 

x 
is continuous with respect to t and 
x and piecewise continuous with 
respect to C 

(2.19) 

Because \|>(t,x,5) = g(5-x)^ (t ,C ) ,  we may express the continuity conditions 
in terms of g^-x)   and ij)(t,0 as follows. 

Sufficient for the continuity of first order spacial derivatives of the 
averaging integral is that (see Eq. (2.14)) 

v5<j>(t,U 

g(?-x) 

g(?-x) = 0 

is piecewise continuous with respect 
to E,   and continuous with respect to 
t in the domain of the definition of <j) 

is continuous in V   , 

on S„ 

(2.20) 

The  integration formula   (2.13)   in  terras   of  g  and <j) ,   if  the conditions   (2.20) 

are satisfied,  is 

J       6gV:<()(t,UdV(0  = V  /   3i<t.dV + /     i^ndS        . (2.21) 
V(x) 5 V Sp 

P 

* 
The  corresponding formula  to   (2.21)   for functions   $ defined within the solid 
grains is 

J      [l-elgj V,J(t,£)  dV(U  - V       /     [l-3]g J  dV - /   g J n       dS        . 
V(x) 5 V(x) Sp 

SP (2.22) 

The  continuity  conditons   (2.18)   and   (2.19)   for second order derivatives are 
in terms  of g and <})   as follows 
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V_Vr^(t,5) is piecewise continuous with 
respect to 5 and continuous 
with respect to t in the domain 
of definition of ^   , 

V g(C-x) is piecewise continuous (This / 
suffices because $   is )  (2.23) 
continuously dlfferentiable due 
to the first condition, Eq. (2.20)). ' 

g(5-x) =0 on Sv  . 

The Integration formula (2.15) is, if these conditions are satisfied, 

/  B^ V *(t,5)dV(0 = V V  /  eg^dV + / gV £n dS - / (V g)?n  dS.  (2.24) 
V(x)  5 5 X ^(x)       S  ^  SP    S  ^   SP 

In summary, if the weight function g Is chosen such that its first 
derivatives are piecewise continuous, g > 0 in V, and g = 0 on Sv, then the 
averaging Integrals are continuously dlfferentiable at least once If $ is 
dlfferentlable, and at least twice if <j) Is twice differentiable within its 
region of definition. 

2.2.4 Averaging Surface Integrals. Some flow properties are only 
defined on the surface of the propellant grains, e.g., the burning rate, the 
regression distance, and the surface temperature. The corresponding 
averages are computed by surface integrals. 

The weighted area of the grain surface that is contained in the 
averaging volume is 

SG =   /   g(s(t,5)-x) dS(?)   , (2.25) 
S (t,x) 

where x = s(t,c) defines the surface and C represents surface coordinates. 
Contrary to the weighted averaging volume VG, the weighted surface area SG 
is not a constant but a function of t and x. 

Average surface functions are defined by 

(t)(t,x)=-^   J  g(8(t,c)-x)*(t,c) dS(c)  . (2.26) 
5 S (t,x) 

P 
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We discuss the differentiability of the surface averages by considering 
a single grain.  let its surface 8(t,5) be defined in Cartesian coordinates 

by 

8(t,C) 
x8(t,c)' 

z8(t.c) 

(2.27) 

Then the surface element dS(c) is defined by (Courant and John) 

ds = z(t.e:l4c (2.28) 

where dc is the product of the differentials of the components of ^, Z(t,?) 

= rdet [[—)   (H)])1/2, and 3s/3c is the Jacobian matrix of the function 

s(t,c). 

The contributions of the single grain to the weighted grain surface 

area is according to Eq. (2.25) 

SG. = // g(s(t,0-x) Z(t,?) d? (2.29) 

The time derivative of SG^ is 

3Z 3C 
r (SG^ - / (-vxg)-^ z dc + / g ^ d? + [ / gz dc] f^ 

s s s^^v 

The integral ^.n the last term in Eq. (2.30) is to be taken over the 
intersection C of the grain surface s with the boundary Sv of the averaging 
volume. If we assume that g = 0 on Sv then the integral is identically 
zero, and we do not have to specify conditions for 3C/3t. 

9R.   Courant and F.  John,   Intvoduation to Calculus and Analysis,   Vol.  II,   pp. 
459-462,  John Wiley and Sons,   Inc.,   New York,  1974. 
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Sufficient conditions for the right-hand side of Eq. (2.30) to be a 
continuous function of x and t are 

a2s 
8c3t 

is piecewlse continuous with respect to 5 
and continuous with respect to t  , 

V g is continuous, with possible exception of 
isolated singular points  , ) (2.31) 

g = 0 on Sv 

V g = 0      on s„ 
x v 

The first condition in Eq. (2.31) is satisfied if the grain surface has a 
normal almost everywhere. The next two conditions on g(5-x) are essentially 
the same as encountered before in the discussion of volume averages. The 
last condition on g is new, and it needs to be introduced if 3s/3t is not 
equal to zero and the intersection s fl sv has a finite area. (See the 
comment to Eq. (2.6).) 

Next, we consider the spacial derivatives of SG^. One obtains 
according to Leibnitz type rule 

V (SG ) - / V g Z d? + [ /  g Z dC] ||  . (2.32) 
X  1   s X        BOS dX 

r v 

The right-hand side of Eq. (2.32) obviously ic continuous if the conditions 
(2.31) are satisfied. 

If the averaging volume contains several grains then SG is the sum of 
the individual SG. . The sum is continuously differentiable if each of the 
grains satisfies the first condition in Eq. (2.31), and g satisfies the 
other three conditions. 

We now turn to the surface average function (|)(t,x), defined by Eq. 
(2.26). We notice that tj) is a continuous function of all its arguments, if 
the conditlonsi (2.31) are satisifed and the surface function (J)(t,t;) is 
continuous with respect to time and piecewlse continuous with respect to 
^ . We assume that ^ possesses these properties and reformulate Eq. (2.26) 

as follows 

♦ I   (SG ) = j;  (/ g $ dS]   . (2.33) 
1   i   i  s , 

Pi 
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The time derivative of the left-hand side of Eq. (2.33) is 

h-*h(SG) + (SG) H (2.34) 

The first term in this expression is continuous under our assumptions. 
Therefore, also the second term (and 3(|>/3t) is continuous, if the time 
derivative of the right-hand side of Eq. (2.33) is continuous. The 
contribution of each term on the right-hand side of Eq. (2.33) to the time 
derivative is, v^a Eq. (2.30) 

as r 3j 
ti=/    (-vxg)ff*  Zd, +/    g^Zd, 

pi pi 

+ /    g* ff <* + [     / g * z dc] If 
Spi apfSv 

(2.35) 

R . is a contiquous function of x and t if in addition to the condition 
(2.31) (j) also sapisfies the condition 

3j 
at 

is a continuous function of t and a 
piecewise continuous function of ? 
on each s  *. 

(2.36) 

Because $ and (5G) , in Eq. (2.34), are continuous functions if (2.31) and 
(2.36) are satisfied, these conditions are sufficient to insure that ({i(t,x) 
is continuously differentiable with respect to time. 

In order to investigate the spacial differentiability of (t)(t,x) we 
differentiate Eq. (2.33) with respect to x.  On the left-hand side we obtain 

\ '   (SQ) + (SG)V $ 
x x (2.37) 

On the right-haqd side of Eq. (2.33), each summand produces the expression 
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Rxi " /  (V g) * Z d; + [ /  rf Z  dC]VvC  . (2.38) 
Spl SpinSv 

Rxi is  continuous If the conditions (2.31) are satisfied.  Because 
(j)V (SG) is  continuous,  the  conditions  are  sufficient  for  continuous 
differentiability of $  with respect to the special coordinate. 

Second order spacial derivatives of surface averaged quantities do not 
enter the governing equations. Therefore, we do not formulate existence 
condition for these derivatives. 

2.2.5 Differential Equation for Surface Averages. All surface 
averages satisfy a differential equation for material properties. We shall 
derive the equation in this section. 

Let U(t,x) be an arbitrary velocity vector and let g satisfy the 
conditions (2.31). Then one can combine Eqs. (2.30) and (2.32) obtaining 
for the sum SG Qf all individual SG,. 

1^ (SG)  + U Vx  (SG)   - /(7xg).(U -||)2dC+/g||dC       . (2.39) 
"_ S 
P P 

The Integrals on the right-hand side are taken over S , i.e., over all grain 
surfaces contained in the averaging volume. 

A correspopding formula can be derived for the product (SG) <{i from Eqs. 
(2.34), (2.35), (2.37), and (2.38) with the result 

^ ((SG) f) + UVx[(SG) ♦] - / (Vxg).(U-||) * Z d? 
s 
p 

(2.40) 

+ /g*||d?+/g|izd,     • 
b S 
P P 

Next, we eliminate the derivatives of SG between Eqs. (2.39) and (2.40), 
obtaining the differential equation 

3 F+uvx*=ib ( *£** -h ( (*-*> ^-|f)-cvcg) zdc 

(2.41) 

S      »- OO   g 

p P 

^ / (* -*)-gffdc _ 
s 
p 
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The first integral on the right-hand eide of Eq. (2.41) is by definition the 

surface average of 3(f/3t. The other two integrals are generally assumed to 
be small and neglected for interior ballistics problems. We notice that 

both integrals vanish if (j) • <j) on the propellant surface, i.e., if the 

property $ is identical for all grains. If U is taken as the average grain 
velocity, the term U-8s/3t may be small, e.g., if all grains have the same 

velocity and dO not burn, because 3s/8t Is equal to the sum of the local 

grain velocity and local surface regression velocity. The term 3Z/3t is 

zero if the grains are not burning. 

If we neglect the last two integrals in Eq. (2.41) and use Eq. (2.26) 

to define 

*-Jc   i>||ds(0 (2.42) 

then the differential equation, Eq. (2.41) simplifies to 

|| + U vx4 = <^> (2.43) 

where <(f)> is a model for <j). 

For the velocity U one chooses the average grain velocity, assuming 

that by this choice one of the neglected terms can be kept small while not 

introducing another dependent variable. 

2.3 Regions o^ Definition of Average Variables 

In this section we describe regions of definition of the average 

functions. In principle, the averaging volume V can be of any shape and 

size. However, in order to preserve an axial symmetry of the averaged 

quantities, the volume V, the weight function g, and the reference point x 

associated with the location of the volume, all must be chosen with certain 

symmetry properties. Instead of trying to formulate a general averaging 

volume with the desired properties, we give two examples of admissible 

averaging volumes. 

The simplest example of an averaging volume Is a sphere with the 
reference point x In Its center and a weight function that depends only on 

the distance from Its center.  Let the diameter of the sphere be I. 

Another example Is an orthogonal circular cylinder with the reference 

point at Its center and with an axis parallel to the axis of the gun tube. 
To be specific, we assume that the height of the cylinder Is 21/3  If I  is 
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the diameter of the cylinder.  In this example, the weight function depends 
on the radial as well as on the axial coordinates within the cylinder, and 
the volume of the averaging volume is the same as that of the spherical 
averaging volume. 

In both examples, the quantity i is equal to a diameter of the 
averaging volume. In general, we may assume a characteristic length 
I associated with any particular averaging volume. The size of the volume 
and, therefore, the size of Jl , is restricted by two requirements. First, 
the averaging volume must fit inside the gun barrel and, second, we want it 
to be larger than the largest grain i^i order to insure that gas is present 
within every averaging volume. let D be the largest diameter of a grain 
and let Dgun be the inner diameter of the gun tube. Then in the two 
examples I   must satisfy the conditions 

(Vmax < * < (DgunUn  • (2.44) 

ftie would obtain similar restrictions for the characteristic length of any 
averaging volume. We assume that D and D are such that the inequalities 
in Eq. (2.44) can be satisfied by a margin if Jl is properly chosen. 

The position of the averaging volume (and its reference point) inside 
the gun tube is restricted. If a constant averaging volume intersects a 
boundary, then the sum of the gas volume fraction a, as defined by Eq. 
(2.3), and of the corresponding particle volume fraction is not equal to 
one. Consequeptly, the definition of averages by Eqs. (2.2) through (2.5) 
cannot be used if a non-zero intersection occurs, and the location of the 
averaging volume is restricted to positions without intersections between 
the averaging volume and boundaries. (See also Section 4.6) This means 
that the reference point x cannot be moved arbitrarily close to all 
boundaries. If the averaging volume is a sphere with the diameter i, then x 
is restricted to locations that are at least i/2 away from the breech, the 
walls, and prqjectile base. In the second example (cylinder), x may be 
located at points that are at least i/2 away from the tube walls and i/3 
away from the breech and from the projectile base. Qbnsequently, because of 
the finite size of the averaging volume, none of the averaged quantities are 
defined in the boundary regions. If the grain diameter D is large, then 
the regions where the averaged quantities are not defined can be a 
significant part of the interior of the gun tube. 

In the remaining regions, the porosity a and all averages pertaining to 
gas properties are everywhere defined by Eqs. (2.3) and (2.4), respectively. 

Average properties of propellent grains are defined by Eq. (2.5).  The 
definition provides a value for the average function only if a < 1, i.e., if 
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there are grains within the averaging volume.  The limitation also holds for 
surface averaged quantities, defined by Eq. (2.26).  The surface averaged 
quantities are grain properties and they are defined only if there are 
grains within the averaging volume. 

Another average dependent variable which is introduced in Section 4.2 
is the weighted number m of grains in the averaging volume that is defined 

by 

* 
m(t,x) VG (l-o)/v (d) 

P 
(2.45) 

where d is the average regression distance of the grains and v (d) is the 
corresponding grain volume, given by a correlation function. According to 
the definition, m is indeterminate in regions without grains, because d is 
not defined in those regions. We notice, however that m -»■ 0 and V m ->- 0 as 
x moves to a position where the averaging volume contains no grains. 
Therefore, we may define a continuation m E 0 in regions without grains. 
With this extension, m is defined in all those regions where gas properties 
are defined, i.e. , everywhere, except in boundary regions. 

2.4 Ayeraging Weight Function 

The averaging weight function 
volume V and on its boundary Sv. 
Sections 2.2.2, 2.2.3, and 2.2.4) 

g(y) is defined inside the averaging 
It has the following properties (see 

g > 0 

g = 0 

Vg 

in V 

on S. 

continuous in V with possible exception of isolated 
singular points  , 

(2.46) 

Vg = 0   on S 

Next, we give examples of functions g(y) that satisfy these conditions 
for the two examples of averaging volumes mentioned in the previous 
section. Let y = C-x, i.e., let the point of origin of the coordinate 
vector y be at the center of the averaging volume. (In both our examples 
the center coincides with the reference point x.) 
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If V is a sphere with the diameter i,   then we may define the weight 

function by 

g(y) =(2+n) (3+n) (W ( , , Jy^ l+n , for . | < y , ,/2    (2.47) 

with an arbitrary n > 0.  The weighted averaging volume VG is for this g(y) 

1/2 
VG = / g dV = 4rr /  g(y)y2dy =4^ d)3   . (2.48) 

As a second example we chose a cylinder with the diameter l and height 
21/3. Let r and z be the radial and axial coordinates within the cylinder, 

with the point of origin at the center of the cylinder Then we may define 

with arbitrary positive m and n 

g(r,z) = j  (2+m) (2+n) (3+n) [ l - i^]l+m(l - l^)l+n       .      (2.49) 

The weighted averaging volume VG is for this choice of g 

1/2 1/2 
VG = / g dV = 4ir /  /   g(r,z)r drdz = 4 TT(|) 3  , (2.50) 

i.e., equal to the volume |v| of the cylinder itself. 

In both examples, we have weight functions with a maximum at the center 

of the averaging volume. The functions are continuous but their gradients 

possess discontinuities. The weight function for the spherical averaging 

volume has a discontinuous point at the center of the sphere. The second 

weight function has a singular gradient along the line r = 0 and on the 

plane z = 0. Therefore, if the flow includes phenomena that require surface 

averaging one should use a different weight function for the cylindrical 

averaging volume. (For volume averaging, piecewise continuity of Vg is 

sufficient.) 

The following two weight functions have no discontinuities. They are 

chosen such that the weighted averaging volume is the same as before, i.e., 

equal to the volume of a sphere with diameter £. 
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A weight function example for a sphere is 

2 
g(r)   --|—  [cos   Orj^j) + 1]       . (2.51) 

TT     -4 

A weight function for the cylindrical averaging volume is 

J 
g(r>Z) = -ip [cos (J^J) + U [cos (^3) + 1]     . (2.52) 

IT -4 

Numerous  other  examples  can  be  constructed,  e.g.,  based  on  the 

functions 

g(r) « (1 - (jjz)2*)1** (2-53) 

g(r) « [cos (l^)]1^ (2-54) 

and corresponding for the dependence on z. Particularly, functions of the 
type (2.53) with large integer m and small positive n have properties that 
are desirable according to Section 4.2.1. 

3.  CONSERVATION EQUATIONS 

The mathematical description of a two-phase flow field is composed of 
two sets of local conservation equations (one for each phase) , a set of 
local constitutive relations for each phase, and interfacial or jump 
conditions which relate locally the two phases only on the interfaces. As 
in other two-phase models of interior ballistics, all chemical reactions are 
excluded. Burning of the grains is represented by a transfer of mass, 
momentum, and energy from the solid phase to the gas phase. Furthermore, 
the effects of body forces on both phases are assumed to be negligible. By 
averaging the local conservation equations according to the definitions and 
fornulas determined in Section 2, and by using the local interfacial 
conditions, we derive the coupled set of average two-phase equations. Ihe 
details of this procedure are given in this section. The average equations 
in vector form are derived in three spatial dimensions and time. The 
governing equations for axially symmetric flow in cylindrical coordinates 
are listed in Appendix A. 
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3.1  local Equations 

3.1.1  local Oonservatlon Equations.  The flow field Is assumed to be 
composed of two disjoint phases:  gas and solid grains.  The gas is assumed 
to be compressible, viscous and heat conducting.  The local conservation 
equations for the gas are the Navier-Stokes equations (Tsien, pp. 3-16)10 

|£- + V.(pu) - 0  , (3.1) 

S (DUG)        ,
N

'
N/N

'> ^       v 
at  + V,(PUU) = - vp + v.n  , (3.2) 

^1^- + V.(pue) = - p V-u + $1 - V.Q  , (3.3) 

where p, e, and u are the density,  specific internal energy,  and the 
velocity vector, respectively.  The constitutive laws for the viscous stress 
tensor 11, the heat dissipation function $„ and the heat conduction vector 
Q are 

11 - 2ME + (X --jii) V.u I  , (3.4) 

^ = 2y E:E + (X - |y) (V.u)2    , (3.5) 

Q = - < VT   , (3.6) 

where 

E = 0.5 [Vu + (Vu)TJ   , (3.7) 

>/    ^^    N/ 

and u, X, K are the shear viscosity coefficient, the bulk viscosity 
coefficient and the heat conduction coefficient, respectively, that may 
depend on the local temperature T. The local pressure and temperature are 
given by equations of state of the form p = p(p ,e) and T = T(p,e) . 

H.S.   Tsien,    "The Equations of Gas Dynamias, " in Fundamentals of Gas 
Dynamics, "   E.W.    Ermons,    ed.,    Princeton   University   Press.    Princeton,    NJ, uw.— 
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Each solid grain is assumed to be incompressible (the density of a 

* 
grain p = constant) but deformable.   The   local conservation equations for 
the solid phase can be expressed in a form similar to those of Eqs. (3.1) 
and (3.2) (Prager) 

1^ (*) + V-(p S) = 0 , (3.8) 

"A "k    "k "k    "k    i A 
f- (p u) + V- (p u u) = V.n    , (3.9) 
0 u / 

where u is the local velocity vector of the grain.  For our purposes, the 

* 
solid phase stress tensor II represents the total stress within the solid 

* 
grain.  A constitutive law for II could be based on Hooke's law.  Although 
the local angular momentum of the grains could be significant, it is assumed 
that the average effect of the angular momentum is small and can be 
neglected.   Consequently, the local conservation equation for the angular 
momentum of a grain is omitted. 

3.1.2 local Interfaclal Conditions. The interfacial conditions relate 
the two disjoint phases. The interface between the gas and solid is 
considered a singular surface across which mass, momentum and energy is 
transferred. The conditions that are valid on the interface can be 
expressed as (Truesdell and Toupin ) : 

n«p (u - u  ) = n«p (u - u  )   , (3.10) 
sp sp 

n«p(u-u  )u + np-n«II=n«p(u-u  )u-n«n    , (3.11) 
sp sp 

n»p(u-u     )    [e+yU'uJ+pn'u  + n'Q-n'II'u sp z 

**>, *       i  *  * * ** 
= n'p(u-u     )[e+yU«uJ+n«Q-n»II«u       , (3.12) 

:llW.   Prager,   Introduction to Mechanics of Continua,  Ginn and Company,  New 
York,   1961. 
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where u  is the local Interface velocity, n is a unit normal, and Q is the 
sp 

local heat conduction vector within the grain. 

The local interface velocity u  is defined in terms of the local 
SP 

regression rate d of the grain surface 

u (t,?(0) - u(t,C(c)] +n  d(t,5(0]    , (3.13) s p ^ P 

where j; is the surface coordinate vector, d >  0   and n  is the unit normal s p 
to the grain,  outward with respect  to the gas. 

3.2     Averaging of the Local Conservation Equations 

3.2.1     Derivations of the Average Gas Continuity Equation and Porosity 
Equation. To   derive   the  average  gas   phase  continuity equation,   we  multiply 
Eq.     (3.1) by    3(t,5)g(5-x),   integrate    over    the   averaging    volume    V(x)    and 
obtain 

/   e(t,Og(g-x) 9p(';u   dv(o 
V(x) 3t 

(3.14) 

+ / 3(t,5)g(5-«) V . [p(t,5)u(t,5)] dV(0 - 0 
v(x) ^ 

Using fornulas (2.9) and (2.21)  with respect to the first and second 
Integrals of (3.14), respectively, we have 

5—/ ggp dV + V  • / gg^u dV +  fg p (u - u  >n  dS = 0   .   ((3.15) 
dt y X   V S SP   Sp 

P 

By the definition of a volume averaged quantity (2.4) and the interfacial 
mass flux condition (3.10), Eq. (3.15) can be written as 

|^ (a(t,x)p(t,x)) + V. (a(t,x)17u](t,x)) 

(3.16) 

,77^ / g(u - u  >n  dS = 0 VG ^ 0     sp  sp 
P 
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tant and VG = constant.  In Eq. (3.16) p is the average 

auantitv I oul is the average of the gas momentum density gas density and the quantity | pu| is the average of the gas mo 

pu.  We define the average gas velocity vector u as the ratio 

u(t,x) E 
pu (t,x) 
p(t,x) 

(3.17) 

Using this definition of u, the local regression rate, defined by Eq. 

(3.13), and the definition of the average surface function (2.26), we can 

rewrite the average gas continuity Eq.  (3.16) as 

^ [a(t,x)p(t,x)] + V.[a(t,x)p(t,x)u(t,x)] - J M|i*l a(t,x) -  (3.18) 

The derivation of the average solid phase continuity equation proceeds 

in a similar fashion to that of the average gas continuity equation. 

Multiplying Eq. (3.8) by (l-B)g, Integrating over V(x), invoking formulas 

(2.10) and (2.22), and using the definition (2.5) of an average solid grain 

property, and (3.13) of the local regression rate, we have 

3 
at 

ine 
1^- (VG(l-a)p) + V.(VG(l-a) [puj] - p / g d dS = 0   . (3.19) 

S 
P 

Using the surface average definition (2.26) and the fact that p is a 
constant, Eq. (3.19) can be written as 

jL (l-oO + V.[(l-a)u] =|| d (3.20) 

Hence, for incompressible solid grains, the average continuity equation for 

the solid phase, Eq. (3.20), Is the governing equation for the porosity a. 

We notice that, if the density is constant or depends only on time, 

then the average velocity is given directly by Eq. (2.5), e.g., u. The 

different definition of the average gas velocity via the average momentum 

density by Eq. (3.17) is advantageous when the density depends on the 

spatial coordinate. 

The average gas continuity equation, Eq. (3.18), is coupled to the 

solid phase by the source term p(SG/VG)d. As expected, the amount of mass 

added to the gas phase is exactly the amount liberated from the solid 

phase. If the grains are not regressing (not burning), then the average 

regression rate d and the source term are zero.  The surface average 
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SG and the surface average regression rate d are two new unknowns.  To 
restrict the number of unknowns, d is replaced by a correlation (denoted by 
<d» which is obtained from experiments (see Section 4.7.7).  To understand 
the error involved in such a substitution, we rewrite Eq. (3.18) as 

l^lap] + V.[apu] = ? || <d(t,x)> 

(3.21) 

+ P H [l£ / g(S(0-x) d(t,5(c)) dSCc) - <d(t,x)>] 
S 
P 

The bracketed terra on the right-hand side of Eq. (3.21) is the error terra 
and is equal to 

i-I [d (t.^.))   / gU(C)-x) dSiO]   -  <d(t,x)> (3.22a) 
SG i 1   8 , 

Pi 
12 

by the mean value theorem for multiple integrals (Apostol)  and where ?. is 
some point on s .,.  From expression (3.22a), the following inequality can be 
derived: 

|-5P / g d dSU) " <d>| < raax|d(t,5(r )) - <d(t,x)>|   .      (3.22b) 
SG  s i X 

P 

Thus, a sufficient condition for the error to be^sraall is that the 

difference between the local regression rate d over each surface and the 
value of the correlation <d> at point x is small. A common expression for 
<d> is given by Eq. (4.100). If the error given by Eq. (3.22a) is not 
small, another correlation for <d> must be used. In practice, the error is 
assumed small and Eqs. (3.18) and (3.20) are written with d replaced by 
<d>. Furthermore, an additional formal error could be introduced by the 
modeling of SG. However, this is avoided by the definition of m in terms of 
SG (see Section 4.7.8). 

3.2.2  Derivations of the Average Gas and Solid Momentum Equations. 
The average gas momentum equation is derived by multiplying the local 
momentum equation, Eq. (3.2), by the function Bg, by integrating over the 

12 T.  Apostol,  Mathematical Analysis,   1st,   Ed.,  Addison-Wesley Publishtng Co., 
Inc.,  New York,  1967. 
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averaging volume V(x) and by applying formulas (2.9) and (2.21).   The 
results of these operations can be written as 

^•v "w 

—   JegpudV-fg pun    'u       dS  + V   •   /   gg puu dV 
t    J

v     
e ^ ^  e ^     sp    sp x    v 

P 

+ /     g  n    .puu  dS = - V     /  eg p dV + V   •   /  3g IT   dV 
sp 

(3.23) 

- /     g   (n    p  - n    •!!)   dS J
s spr sp 

P 

We  use  the definition of  an average gas  property (2.4)   and the definition of 
u   (3.17)   in  Eq.   (3.23)   to obtain 

at [a(t ,x)p(t,x)u(t,x) ] + V* [a(t,x)     puu] (t ,x) ] 

"-v {L / eg? dv} +v.{^ / ggff dv} (3.24) 

~ TVTT    J      gn     p-n    •Il+n    • p     u - u ufdS VG sp    sp sp spJ 

The terra [puu I (t.x) represents the average of the tensor puu. Because 
the average quantities p and u are already defined, we can denote the 
fluctuations of the values of the local variables from the value of the 
average variables as 

p '(t^ ,x) = p(t,U " p(t,x) 

and (3.25) 

u'Ct,? ,x) = u(t,0 - u(t,x) 

If  we  substitute  fortailas   (3.25)   into the  integral  representation of a fpuul . 
we obtain 

—   J   0g puu dV = apuu + rr-^- J   Bg pu'u'   dV VG VG 
(3.26) 
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The difference between the first terra on the right-hand side of Eq. (3.26) 
and the left-hand side, involves a volume average of the product 
of velocity fluctuations. We define this difference as the turbulent stress 
tensor of the flow. Thus, turbulence in this report is defined as volume 
averaged fluctuations.  The turbulent stress tensor !!_, models the quantity 

~ tvG    ^ 0S ^,"' dV = pUU " ^^    ' (3.27) 

We shall not discuss particular turbulence models in this report. A model 
is proposed in Gibeling et al. Lfeing the integral representation of [ouu] 
and applying the mean value theorem for multiple-integrals (Apostol), ' we 
can rewrite the right-hand side of Eq. (3.27) when V^,, is a connected set 
as 

[u(t,x)u(t,x) - u(t,Ou(t,0] p(t,x)    , (3.28) 

where 5 lies in V   and is different for each component of the tensor uu. 
From  Eq.  (3.28),  a  good  model  of  the  turbulent  stress  tensor  for 
compressible flows is one which models the significant differences between 
the tensors uu and uu.  With respect to the errors generated by such a model 
11  in Eq. (3.2 4), we want the errors in the vector 

V'fan  - [apuu - a|puu|} (3.29) 

to be minimized by the model. 

Substituting Eq.  (3.27)  into  Eq.  (3.24),  using  Eq.  (3.13),  and 
algebraically manipulating the result, we have 
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frr [ctpu]  + V« [apuuj  = - aVp + V« (aR)  + V« (an.) 

+ P   I! U<d>   "   [4    /      g(nSnP   "   nSn-n>dS +   P  V«] VG sp sp 

Ivn      /       gf^n'P^-^n^   "   n«n-P(u-^n)u]    dS} 
P 

VG    ^ sp '   "       sp' sp sp 

r 1        ,   *  ,    * SG   *        , 
+ {4-   /  p   d u  dS - |^ u<d>} VG VG 

+ {v*[4r    /  3g(puu-^uu)  dV - an   ]} VG 

(3.30) 

" {V[4r    /  ^P dV -aP]} VG 

+ V.[4r   /  egff  dV - an]} VG 

where p and 11 are the conctitutive models for the average pressure defined 

by  [/ ggpdV]/[a«VGj    and the average viscous stress tensor defined by 

[/ 6gHdV]/(ocVG] , respectively. In general, it is simpler to model the 
average pressure and viscous stress tensor than to actually integrate the 

local constitutive laws. Each term in Eq. (3.30) which is enclosed by 

braces is an error term.  We now shall discuss each error. 

* . 
The errors in the models p, II, 11 , and those introduced by u<d> are 

represented by the last four terms on the right-hand side of Eq. (3.30).  If 

V„0_ is connected, the errors in the last two terms can be written as gas 

V  [^ / ggp dV - op] = V{a(t,x) [p(ti(x)) - p(t,x)]} (3.31) 

and 

V  • hjp / Bgn dV - an] = V.{a(t,x)[n(ti(x)) -n(t,x)]}    ,  (3.32) -VG 

where g (x) are the mean value points in V  (t,x) which, in general, are 

different for p and for each components of the tensor n.  The models p and 

n as well as the errors (3.31) and (3,32) are discussed in Sections 4.7.1 
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and 4.7,2,  respectively.   For  the gas momentura equation,  the best 

approximations for p and n are the ones which minimize both the differences 

in their values and their derivatives . 

The error in the turbulence model was discussed previously in this 
section. 

The seoond braced term in Eq. (3.30) can be written as 

P || 11 1G / S u(t,5(c)] ^t.aO) dS(c) - *(t,x) <d(t,x)>}   .(3.33) 
1 ^  spi 

* , 
If both, u and d which are defined on the grain surface are functions of t 

only, then expression (3.33) is zero and no error exists.  When this Is not 

the case, one can bound (3.33) using the mean value theorem for multiple 
Integrals by 

* SG i     i */■       \ •        *       •      i 
p —| max |u[t,C(ci)J d(t,x) - u(t,x) <d(t,x)>| (3.34) 

where ^, is different on each surface sp^ .  Expression (3.34) can be bounded 

by 

|p —| |d(t,x)max|u(t,5(Ci)J - u(t,x)| + |u(t ,x) | | <d(t ,x)> - d(t,x)|} . 

(3.35) 

Thus,  the error in replacing -SJJ J  gu d dS with u<d> consists of two 
parts.  One error Involves the approximation of d with <d> and is discussed 

In Section 3 .2 .1 .  The other term is small If the values of the local 

particle velocity at the grain surfaces are near that of the average 

particle velocity at x; that is if the fluctuations are small. If Jjoth 
* 7 

terms are not small, then a correlation of the fluctuations u d' must be 

modeled and included in Eq. (3.30). 

The term 

VG (g Kp-^'V" - v*(*"V^ ds (3.36) 
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can be rewritten using the mass flux jump Eq. (3.10) and regression rate 
definition (3.13) as 

- P* ^ / g (u - u) d dS   , 

P 

or using the momentum flux jump Eq. (3.11) as 

(3.37) 

-^r / g [ (nl • 5 - n  p) - n • n] dS 
VG sp sp sp (3.38) 

On the interface between the gas and the particles, we assume either that 
the normal stresses are equal (the integrand in Eq. (3.38) is zero), or 
equivalently, that the gas and particle velocities are equal (the difference 
in the integrand in Eq. (3.37) is zero).  In the special case of no burning 
• 
d =0, the error is zero. When the above assumption is not true, the 
expression (3.36) must be modeled by a correlation. 

From Eq. (2.21) with (J) = 1, we have the relationship 

Va — hn   \     S*an  dS VG sp 
(3.39) 

Using the fornula (3.39), we have the equality 

VG 
/  g[n p - n 'ilj dS + pVa 

sp sp 

(3.40) 

^ /  g[nsp(p -P) -nsp.n] dS 

We define the surface integral on the right-hand side of Eq. (3.40) as the 
drag force. The drag force is modeled by the correlation D which is 
discussed in Section 4.7.5.  The error incurred by this approximation is 

{ / g[nsp(p " P) " n
sp-n] dS - D(t,x)} (3.41) 
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This definition Is consistent with Ishii's ^ development but is 

different from Gibeling et al. and Cough's which is defined in terms of 

the surface integral of the weighted fluctuation of the normal total gas 

stress tensor; n •(n-fl) - n (p-p). For the special case when the average 

viscous stress tensor is zero (the inviscid two-phase model), our definition 

and those of Gibeling et al. and Gough1 agree. We recognize the fact that 

Eq. (3.41) is a formal definition which may not correspond to an 

experimentally determined drag force. In such a case, other effects 

included in the experimental drag force would have to be subtracted to 

obtain the correlation corresponding to D. 

The derivation of the average solid phase momentum equation parallels 

that for the average gas momentum equation.  We multiply Eq. (3.9) by 

(l-g)g, integrate over the averaging volume V, use formulas (2.10) and 

(2.22) and the definition of the average of a solid grain property (2.5) to 
obtain 

T^f 
^    [(l^^X))       [pu|(tt3C)l       +V.[(l^)) 

= V ^VG ^ (i-6)gn(t,U dv} 

puu (t,x)] 

(3.42) 

* vt ^ * * 
+ /  g n -pU-u )u dS - /  g n .n dS 

s s 
p p 

Because p is a constant. (t,x) 
* 
P 

IF* 
uu (t,x) pu[ (t ,x) ■ p u(t,x) and | puu 

By adding and subtracting V[(l-a)pJ, by using Eq, 
* 

n •!! on the surface with its equivalent via the momentum flux interfacial 
jump condition (3.11), we can rewrite Eq. (3.42) as 

(3.39), and replacing 

IT 
M.   Ishii,  Thermo-Fluid Dynamic Theory of Two-Phase Flow,   Eyvoilesy France 
1975. 

36 



Sect.   3.2.2 

-[(l-a)pu]   + V'[(l-tx)p| uull   ■"  (l-a)Vp 

+ Vx^VG    ^   (1_*>8P   dv + Cl-tt)  Pi} 

~Q    I    S nsp.p (u-u8p)u dS (3.43) 

+ h   /     g[neJ " n««P " "«„•"]   dS 
VG sp sp sp 

*    *   >, *., 1 X      IT 7C 

+ ^r     /       Sl^n-P^n^   "   USn
,p(u-^n)u]    dS ' 

P 
VG    '„    °L   sp "" sp' sp ' sp' 

where  I Is the identity tensor.     Eq.   (3.43)   can be rewritten as 

|-[(l-o)pd]   + V* [(l-a)puu]   - - (l-a)Vp + 7«[(l-tx)n] 

+ v-[(i^)nT]  -?!§* <d>+^ D 

rl r r >/N/N/ >S »    W    X K^ ■* 
+ KTTT   i     an    'p (u-u     )u  - n    •p(u-u     )ul   dS} lVG    -L       L   sp sp sp sp    J       J (3.44) 

rl /• **^* *SG*«1 

^k   L    gn -pCu-u )udS+p||u<a>} 

JL A A 

+ {V* [p (1-a) (uu- uu ) - (i-o) nj} 

+ {v. [ir   / U-6)S n dV + (l-c.)pl - (i-a)n]} VG 

+ lV-[(^ /  g[nsp(p-p) -asp.n] dS-^D} VG 'g  - sp 
P 

* 
where 11 is the constitutive model for the average stress tensor for the 
solid phase and represents 

/ (l-e)g n dV + pi 
1-a VG 

(3.45) 
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A 

and II  is the constitutive model for the average solid phase turbulent 

stress tensor.  In analogy to 11 , IT models the tensor (see Eq. (3.27)) 

A      Is 
u(t,x)u(t,x) - Ct.x) -"T—^p / ^"^g u' *' dV  .     (3.46) 1-a VG 

We recall that by definition 11 denotes the total stress tensor for the solid 

grain.  The quantity defined by Eq. (3.45) is the difference between the 

average total stress in the solid phase (the integral of (l-3)gn/VG over the 

averaging volume) and the stress caused by the average gas pressure (-pi). 

The resulting stress is the stress caused by the grains themselves, for 

example, by the compactification of the propellant bed. Consequently, we 
call the expression (3.45), the average intergranular stress, and IT the 

average intergranular stress model. As with the average pressure, viscous 

stress tensor, and turbulent gas stress tensor, it is simpler to separately 

model the intergranular stress, the solid phase turbulent stress, and the 
drag. The errors incurred by these models are represented by the last three 

braced terms in Eq. (3.44). 

The remaining error terms in Eq. (3.44) (those enclosed by braces) are 

the surface integral involving the velocity or stress jump, and the surface 

integral representing the source term. These terms are discussed in the 

derivation of the average gas momentum equation (see the analyses beginning 

near Eqs. (3.36) and (3.33), respectively). 

3.2.3  Derivation of the Average Gas Internal Energy Equation.  The 

average internal energy is needed to compute certain quantities, e.g., the 

pressure and temperature via the equations of state for the average 

quantities. The average internal energy can be obtained in either of two 

ways. First, by adding the local internal energy equation to the equation 

for the local kinetic energy, an equation for the local total energy can be 

written. Following a similar procedure to those given in Sections 3.2.1 and 

3.2.2, we then can derive an average total energy equation. Finally, the 

average internal energy value is obtained as the difference between the 

average total energy, and the average kinetic energy determined from the 

average velocities. The second way is to average the local internal energy 

equation, Eq. (3.3), directly. The former procedure is the most common. 

However, we use the latter approach because several terms which must be 

assumed small or modeled by additional correlations can be avoided, and the 

terms which must be modeled, have simpler physical interpretations, and 
therefore, are easier to model. An example of a term that can be eliminated 

by the second method but is present in the first Is 
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/ 3(t,C) gU-x) [p(t,5)u(t,C).u(t,5) - p(t,x)u(t,x).u(t,x)] dV 
V 

(3.47) 

= / Bg p u'-u' dV 
V 

The non-negative integral (3.47) is the average difference between the local 
kinetic energy and the dot product of the average velocity times the 
density. An example of a term that can be modeled more easily in the 
average internal energy equation is the dissipation term. In the average 
internal energy equation, the term $ represents the average conversion of 
viscous work by the fluid into heat only, whereas, in the average total 
energy equation, the corresponding term V'dl'u) models the average 
conversion of viscous work of the fluid into two quantities, heat and 
kinetic energy. 

The average internal energy equation is derived in a similar fashion as 
the average gas continuity equation and gas momentum equations. We multiply 
Eq. (3.3) by 3g, integrate over the averaging volume V(x) and use formulas 
(2.9) and (2.21) to obtain 

— / 3g pe dV + V« / Bg pue dV = - /  gn •pU-u  )e dS 

- / Bg pV«u dV  + / Bg * , dV - V' / Bg Q dV 
V V V 

-/ g Q«n  dS 0 ^ sp 

(3.48) 

We define the average specific internal energy e similar to the average gas 
velocity, that is, as the quotient of the average internal energy density 
pe and the average mass density p : 

Ipel(t.x) 
6   p(t,x)  • 

(3.49) 

Using Eqs.  (3.13)  and (3.49), Eq. 
manipulation, as 

(3.48)  can be written,  after some 
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7— (ape) + V* (opeu)   = - apV* u + a* T  + a*_ - V* (aQ) 

*  SG        • Ir- 
+ p   VG6  <d>  "W   (     gQ,n8p  dS 

0 
P 

+ V. [apeu - a|peu|]   + [^Q   /  PgJj  dV - a* L - a*T] (3.50) 

+ V.[oQ -■—   / egQ dV]   + [apV-u - ^7   /  BgpV'u dv] 
Vl,    V V 

- p H e <d> - VG  /   ged ds]       • 
p 

where $T, $T, and Q are the constitutive models for the average dissipation 
function, turbulent dissipation function, and the average heat conduction, 
respectively. ,, The average energy release by the propellant during burning 
is denoted by e(t,x).  The term apeu-a| p eu , which is - (1/VG) /ggpe'u' dV, 
is analogous to that in Eq. (3.26). This term is zero if either e' = 0, or 
u' 5 0, i.e., if e or u is a function of time only. However, in turbulent 
flows, this term can be significant. A model of the term as the gradient of 
the energy variable is given by Cfebeci and Smith . In interior ballistics 
the term is probably large, because for moving and burning grains the 
extrema of e1 and u' are likely to correlate.  We denote the model of this 

term by QT.  The term/  (gQ* n /SG)dS represents the average heat flux into 
1 o S p 

p 
the particle from the gas and is modeled by the correlation <e>. The models 
for $T and $ r, Q and Q^, and e and <e> are discussed in Sections A.7.3, 
4.7.4,  and   4.7.8, respectively. 

We  now can rewrite Eq.   (3.50)   as 

14 . . 
T.   Cebeoi and A.   Smith,  Analysis of Turbulent Boundary Layers,  Aoademio 
Press,  New York,  1974. 
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— (ape) + V» (apeu) = -ap V«u + a$L + a*T - V« (aQ) (aQT) 

+ j) »  ; <a> - ^ <e> 
VG VG 

+ {^G / ^ [^jCt.O -tL(t,x) -*T(t,x)] dv} 

- (v-i^ / 6g[Q(t,U - Q(t,x)] dV} - {V.[(a [peu] - apeu) - oQj} 
VG 

" (w / g[Q(t,C)-nfln - <e>] dS} 'VG sp 
(3.51) 

+ {4F / eg[p(t,x)v.u(t,x) - p(t,OV.u(t,0] dV} 
VG 

+ )S^[e<S>-4 / SJas]}  , VG 

where the terms enclosed by braces are error-type terms. 

The first four error terms depend on a model and are discussed in the 
appropriate model section (see Section 4). The remaining two terms can be 
written by following similar analyses to these in the average gas momentum 

equation derivation as 

VG 
i^ / gg [pV'u - pV«u] dV = a(t,x) p(t,x) [V»u(t,x) - V«u(t,£(x))] 

(3.52) 

+ a(t,x) V'u(t,5(x)) [p(t,x) - p(t,5(x))] 

and 

I* SG 
lP VG [e <d> --^ / g * d ds] 

(3.53) 

< |p Sgi {e I <a> - SI + 'd max |e(t,x) - i[t,5(c.)) |} 
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where 5(x) is a point in Vgas(Vgas is assumed connected) and ? is a point 
on the surface s J. 

The error represented by Eq. (3.52) consists of two parts: the error 

made by using the divergence of the average velocity for the divergence of 

the local velocity, and the error made by using the average pressure 

correlation for the local pressure. If both p and V»u were functions of 

time only, the error would be zero. If the term is not negligible, then a 

correlation that models the average fluctuations of pV»u from pV.u must be 

included. Most often the term is neglected, but a model may be necessary in 

some turbulent flows. The error generated by replacing the surface integral 

of ged/SG with the product of correlations e<d> , Eq. (3.53), also consists 

of two parts. The first involves the approximation of d by <d> which is 

discussed in Section 3.2.1. The second is small if the fluctuations are 

small of the local internal energy from the specific internal energy of the 

gas at flame temperature, e.  In practice, both errors are assumed small. 

If not, a correlation which models the fluctuation of ed from e<d> over the 
surface of the grains must be included. 

3.2.4 Derivations of the Surface Average Equations. On the surface of 

the particles, the average normal regression distance d and the average 

surface temperature T can be defined according to the definition (2.26), 

*     * 
where d and T denote |he local values, respectively.   For a spherical 

particle, for example, d is the local difference between the original radius 

of the parficle ^nd its current radius.  According to Section 2.2.5, the 

variables d and T satisfy the differential Eq. (2.41) so that the average 

regression distance equation is 

|| + S.Vd* - <d> + {^ /  g[|| - <d>) dS} 
p 

+ {-^G /  (d - d) [u - u Hxg dS} (3.54) 
S sp  x 

0 
P 

and the average surface temperature equation is 
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* * 

fi + u-VT = <T> + {^ /  g(^- - <T>) dS} 
s 
p 

+ {^ /  (T-f) [2 - usp).Vxg dS} (3.55) 

p 

S 
P 

where u  = r—, <d> is the correlation for the regression rate, and <T> is 
S p   d u 

the correlation for the rate of change of grain surface tenperature. 

The last three terms in each of the Eqs. (3.54) and (3.55) are error 
type terms. Ihe first error terms in Eqs. (3.54) and (3.55) are the surface 
averages of the fluctuations between the local values and its corresponding 
correlation values of the regression rate and surface tenperature, 
respectively. Ihe regression rate term is discussed in Section 3.2.1 and 
similar error estimates and comments can be made concerning the surface 
temperature term. The remaining error terms involve fluctuations from 
formally defined averages.  The last terms in Eqs. (3.54) and (3.55) involve 

fluctuations of d and T from their average values, respectively. Because 
the integrands of these surface integrals include other terms, these 
integrals are not surface averages of fluctuations, and, thus, are not 
necessarily zero. The other set of error terms include the product of the 
fluctuations of the local interface velocity from the volume average 

particle velocity u with the fluctuations of T and d from their average 
values. As before, the integrals involving these products are not surface 
average integrals. If the fluctuations are small over the surface of all 
the particles, then the terms can be neglected. Such cases occur when the 
regression distance and/or the surface temperature of all the grains are 
equal. If these surface integrals represent significant contributions to 
the rate of change of the variables, correlations for them must be 
formulated and included in the governing Eqs. (3.5 4) and (3.55). 

3.3   Summary and DLscussion of the Oonservation Equations Without Error 
Ite] 

In this section, we will list and discuss the equations derived in 
Section 3.2 without error terms. We are aware that some of the neglected 
terms may be significant in some flows. In such cases, it (they) can be 
appended to the governing equation(s) and modeled. A good way to decide 
whether a term should be neglected or included in a set of equations is to 
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compare the accurate solution of the equations with data from well-defined, 
carefully done experiments. Furthermore, we realize that some of the 
constitutive laws and correlations quite possibly can be coupled to each 
other and terms in the governing equations could be grouped differently. 
Thus, the formal and physical meaning of some of the constitutive laws and 
correlations can change. Therefore, the form of the equations, correlates, 
and constitutive laws for interior ballistic applications listed in this 
report should not be considered as final. 

The porosity Eq. (3.20) (the average solid phase continuity equation) 
can be written as 

i^ (1-a) + V.[(l-a)u] = -ri  , (3.56) 

where the source term is given by 

Fj-H^  • (3-57) 

The average solid phase momentum Eq. (3.44) expresses the conservation of 
the solid phase momentum density, and is 

^V -ie-it St Jf ^t ife 

1^ [(l-a)pu] + V.[(l-a)puu] = - (l-a)Vp + (l-a)p Ast 

+ ^"^ Adrag-pur 

ress 

(3.58) 

where 

(l-a)pAstress = V.[(l-a)il + (l-oOnJ    , (3.59) 

and 

^"^ Adrag=WD   * (3-60) 

The average gas phase continuity Eq. (3.21) is 
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(3.61) 

The average gas phase momentum  Eq.   (3.30)   expresses the conservation of  the 
momentum density and, with the definition of drag  (3.40),  can be written as 

— (apu) + V« (apuu) aVp + ap A .   + ap A  . 
vise     turb 

(3.62) 

** 
+ pur1 - (i^)p Adrag 

where 

ap A .   = V* (all) 
vise 

(3.63) 

and 

ap A^.   - V« (anj 
turb       T 

(3.64) 

The average gas phase energy Eq. (3.51) expresses the conservation of the 
gas phase internal energy density, and is 

T— (ape) + V* (apeu) = - apV« u + a*. + aT  + per.    , (3.65) 

where 

1  *L   T 
(3.66) 

and 

avy i = - v (aQ) - H <*e> - V* (aQT) (3.67) 
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The term $ . contains all the models for the heat dissipation functions and 

the term H    contains those for the heat conduction within the gas and to the 

particles, and the turbulent heat flux.  The average specific energy 

released by the burning of the propellant is denoted by e(t,x). 

The governing equations for the surface average regression rate (3.54) 

and for the surface average surface temperature (3.55) are 

3d  *  * 
+ u'V d = <d>   , (3.68) 

and 

3t 

A 
^\ m      J* JL 

^-+ u-V T = <T>   . (3.69) 

Because the left-hand sides of these equations represent material 

derivatives, one can interpret the equations as state equations for the 
surface material. 

SG • 
The source term is modeled by -^F <&>  which appears in every volume 

averaged equation.  Recalling the definition of the source term 

SG •,,   „,   1  c  • • 
— d(t,x) =_JgddS,        d>0 — dU.xJ = yg J g d dS,        d > 0  , (3.70) 

P 

we see that the model must be zero when no particle is burning within the 

averaging volume at point (t,x) (regression rate d is zero). When no 

particles exist within the averaging volume we want the value of the source 

term to be zero. This is reasonable because for the case of uniformly 

regressing particles, the integral in Eq. (3.70) approaches zero as the 

porosity approaches one. Furthermore, the value of the model must be always 

non-negative. Comparing Eq. (3.61) and p times Eq. (3.56), we see that the 

value of the averge mass flux per volume added to the gas phase is exactly 

that being taken away from the solid phase within the averaging volume. The 

average balance can also be seen in the momentum equations and involves the 

momentum flux model pur.. The drag force per volume, D/VG, is also balanced 

on the average in the momentum Eqs. (3.58) and (3.62). We note that the 

model for the drag force D should be zero when no particles exist (a=l) in 

the flow because then the drag force Eq. (3.40) is zero (S has zero surface 

area). Appropriate types of average stress tensors are also included in the 

average momentum equations.  The average stress tensors 11, !!„, IT, IIT in Eqs. 
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(3.62) and (3.58) are defined via volume averages in contrast to the surface 

average definitions of the source and drag terms.  These average stress 

tensors are weighted by the appropriate phase volume fractions, i.e., by 

a for II and IIT and by (1-a) for II and II .  Consequently, the contribution of 

the average gas stress tensors to the change of gas momentum consists of the 

two terms aV«(II + IIT) and Va»(II + !!„) .  An analogous statement holds with 
respect to the solid phase.  The internal energy of the gas phase, Eq. 

(3.65), is augmented by the source term per..  The appropriately weighted 

volume averaged heat dissipation functions $T and $T (the contribution from 

turbulence) are grouped together.  The average work done by the gas pressure 

is denoted by -pV»u and is weighted by the porosity.  The average heat flux 

SG  » 
between the gas and the solid is represented by — <e>.  The correlation <e> 

should be positive when the temperature of the gas is higher than that of 

the solid, negative in the opposite case and zero when the temperatures are 

the same or when no particles exist in the averaging volume. The average 

heat conduction in the gas is modeled by V*(aQ). The turbulent heat flux 

vector is modeled similarly by V'(aO ). The last three terms are grouped 

in one term f.. The surface averaged equation for the average regression 

distance, Eq. (3.68), has a non-negative valued right-hand side represented 
0 

by the correlation <d>. The governing equation for the average surface 

temperature, Eq. (3.69), has a right-hand side that usually should have the 
a 

same algebraic sign as <e>. 

The limiting case of no particles within a region is of particular 

interest in interior ballistics applications because such regions do exist 

inside a gun tube. The other limiting case of no gas does not exist in our 

applications and, thus, is of no practical interest. In the case of no 

particles (a=l), the set of conservation equations greatly simplify. The 

source terms are zero and the drag and interface heat transfer terms are 

also zero. However, it is important to notice that, first, the gas phase 

equations do not reduce to the local equations, Eqs. (3.1) through (3.3). 

The simplified set (a=l) differs in form from the local equations because it 

includes the turbulence terms, that is, V«(1I ), a<J> , and V*(0T). This fact 

reminds us that the resulting set of equations is still a set of average 

equations for a finite averaging volume V. Secondly, even if the averages 

of all the products of fluctuations were zero (no turbulence), then the set 

of equations for the gas flow would have the same form as the local 

equations, but the solutions would not be the same in general. This is so 

because the quantities p, u, and e are averaged, and their initial and 

boundary conditions are not the same as the initial and boundary conditions 

for p, u, and e in general. Thirdly, if we let the averaging volume go to 

zero in the simplified set (with a=l), the turbulence terms would be zero 

because the fluctuations are averaged over the averaging volume which has 

zero volume. In this case (a-»-l and V(x)->-0) the averaged equations reduce in 

form to the local equations and the initial and boundary conditions should 
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reduce to the local conditions.  Thus, the solutuions of the tvjp set| would 

be identical.  Fourthly, in the case of a-1, the equations for d |nd T^Eqs. 

(3.68) and (3.69), are homogenous (<^>vle
= <T> = 0) but a value of d and T can 

be computed from  these equations if u is defined.  Although these values 

would be physically meaningless, they allow the solution to be computed 

numerically everywhere without tracing the internal boundaries of gas and 

mixture.  Because these internal boundaries cannot be predicted ahead of 

time in a two-dimensional flow field, this provides a distinct numerical 

advantage.    Fifthly,  the  average  solid  phase  momentum  equation  is 

identically satisfied when a=l.  Thus, the components of the vector u cannot 

be determined from Eq. (3.58), and the numerical advantages discussed with 

respect to d and T are lost.  In fact, when an implicit numerical algorithm 

is used to solv| Eqs. ^3.56) through (3.69) directly for the variables 
p, a, u, u, e, d, and T, it can be shown that the matrix equation which must 

be solved for a new time level of values is singular (the rank of the matrix 

is deficient) when a=l.   To avoid this situation, we can algebraically 

manipulate the porosity and solid phase momentum equations into a non- 

conservative form when 3u/3t has a coefficient one.  Then the components of 

u can be defined everywhere.  Another advantage of solving for the values of 
u , d, and T directly from their governing partial differential equations 

when ct=l is that thei'r values should be continuous at a=l if the equations 

approach a non-singular form at a=l. 

In Section 4.1, 4.2, and 4.3, we discuss better forms of the partial 

differential equations and another choice of dependent variables for 

numerical treatment. 
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4.  GOVERNING EQUATIONS 

4.1 Basic System of Governing Equations 

A system of conservation equations for average flow properties was 
derived in Section 3. One obtains an equivalent system of differential 
equations by solving the conservation Eqs. (3.56) through (3.69) for the 
time derivatives of the dependent variables. Let the ensuing system be 
called governing equations of the flow. It consists of the following set of 
equations 

|£-= - v.(pu) -Md - oov-u - (u - u).v(i - a)] + i2—*-)  r9 o t cx ex    z 

-— = - u* Ve 
9t p 

£ v-u + (^^) ^-r.+-($.+*.)  , 
p        a   p 2  p  1   1 

fl ■ " ^" - ^P " ^ -^lT2-^   Adrag + Msc + Aturb 

i£ = - (*.V)u - ^Vp + ^ Adrag + Astress   . 
P    P 

(4.1) 

||- v.[(i-a)u) +r2  , 

ad   * *  . 
^- = -  u«Vd + <d> 
3t 

£± = - u«VT + <T> 
o t 

The system is closed by a number of correlation models that will be 
discussed in detail in Section 4.7. Presently, we merely give a short 
exposition of the corresponding terms in Eq. (4.1). The listed arguments of 
the correlation functions are only representative, indicating the most 
obvious dependences. The actual models may depend on fewer or on more 
arguments. Also, all models depend implicitly or explicitly on the 
averaging volume and on the averaging weight function. 

The equations of state enter the system in form of a relation for the 
pressure, viz., 

p = p(p,e) (Pa) (4.2) 

49 



Sect. 4.1 
The mass source due to the phase change by combustion is presented by 

s (d) 
r2 = (1 - a) -E-jp <d>   ,  (i/s)  , (4.3) 

vp(d) 

SC it ^t it it 
where we define — = (l-a)s (d)/v (d), and v (d) and s <d> are the volume 
and surface correlations,  respectively^ for propellant grains with the 
regression distance d.   The quantity <d> represents the regression rate 
correlation.  Generally it is a function of the type 

<*d> = <d> (p,|u - ul, 3p/8t)    ,   (m/s)   . (4.4) 

The heat dissipation is modeled by the function 

♦ j - «1(u,T,o,u,a)    ,   (W/m3) (4.5) 

where T(p,e) is provided by the equation of state correlation.  The heat 
conduction is represented by the function 

^ = f^T, VT, V-VT, <T»   ,   (W/m3)   . (4.6) 

The last argument of ¥. in Eq. (4.6) is the rate of change of the grain 
surface temperature, which may be modeled, e.g., by 

<I> = <T> (T,T,|u-u|)   ,   (K/s)   . (4.7) 

The term Adr  represents the acceleration due to the drag between gas 
and particles 

Adrag = Adrag (("""),d,T) ,  (m/s
2)   . (4.8) 

The  velocity governing equations  contain  three more  acceleration 
terms.  They are, the acceleration by the laminar viscosity 
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Kisc  = Vsc = (T.Vu.V-Vu.a)   ,   (ra/s2)   , (4.9) 

the acceleration due to turbulence 

Aturb = ^turb (T.Vu.V.Vu,...)   ,   (m/s2)   , (4.10) 

and the  acceleration due to intergranular stress and solid phase turbulence 

Stress = Astress (at'd.V*.---)    '   (m/s2)   ' (4-11) 

The system of governing equations, Eqs. (4.1), is for numerical 
solution more advantageous than the system of conservation Eqs. (3.56) 
through (3.69) because none of the Eqs. (4.1) become identically satisfied 
as ct->- 1. This permits one to carry out the calculations throughout the 
interior of the gun tube without tracking the boundaries of regions with a = 
1. 

We can further improve the equations system by selecting a new set of 
dependent variables. The choice of the new variables and the corresponding 
new system of governing equations are described in Sections 4.2 and 4.3, 
respectively. 

4.2  Choice of Dependent Variables 

4.2.1 Particle Number Functloa. If the source terra T- is computed 
using Eq. (4.3), then one can expect numerical difficulties as v (d) 
approaches zero. Interpreting the equation physically, it is plausible that 
1 - a ~ v , so that V„ vanishes at the limit. However, because a and 
d (and, consequently, v (d)) are separate variables, their numerical values 
will, in general, approach the corresponding limits at different times and 
locations. In a computer program, the situation requires special safeguards 
to prevent overflow. 

The special programming can be avoided if the number of particles is 
introduced as a dependent variable. This can be done by different 
approaches. In one approach, one assumes that the governing equations, Eqs. 
(4.1) for a and d, and the source term correlation (4.3) hold exactly. Then 
the number of particles, ra(t,x), can be introduced by a formal definition In 
terras of already defined functions. In a second approach, one avoids the 
use of the correlation (4.3) and defines m(t,x) concurrently with the 
particle volume function v (d) such that the equation for a in the equation 
system (4.1) is satisfied approximately.  Finally, one can define m(x,t) 
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by a specific "reasonable" formula and then seek to determine a 
corresponding function v (d) such that the equation for a is approximately 
satisfied. Each of the approaches requires some approximations. The last 
approach has the advantage ^ that it provides guidelines how to chose the 
particle volume function v (d). 

We start with the first approach and define m in terms of a and v (d) 
as in Eq. (2.45) by 

m(t,x) = VG (l-a)/v (d)   . (4.12) 

of r2 by Eq. (4.3) is used 
The two governing equations for a and d in Eqs. (4.1) are, if the definition 

A 

i^= -V.((l-a)u] - (l^)!P^<d> 
vp(d) 

and }(4. 13) 

* 
8d    * *   . 
f2- = - u-Vd + <d> 
o t 

* 
Next, we express a in terms of m and v using Eq. (4.12), and obtain 

* 
m * 

a = 1 " VG Vp(d)    ' (4-1A) 

The expression (4.14) is substituted into the first Eq. (4.13).   After 
simple manipulations, whereby the relation 

dVn^) ^ 
a  ■ " s (d) (4.15) 

dd       p 

is assumed, one obtains from the system (4.13) the new system 

8m _     * * 
g-r ■ "" v» (m u)    > 

(4.16) 
* 

8d    * *   . 
-^ = - u'Vd + <d> 
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Thus, one can replace the two governing Bqs. (4.13) by the two Eqs. 
(4.16) and the relation (4.14).   If m is used instead of a as dependent 
variable, tlien the source term r„ in the equation system (4.1) is calculated 

by 

fe Sp(d) <d> 
(4.17) 

instead of using Eq.  (4.3).   The expression (4.17)  has no numerical 
slngalarities.   In addition, the new Eqs.  (4.16) are simpler than the 
previously used set (4.13).   Physically interpeted, the first Eq. (4.16) 
means conservation of the number of particles, independently of their size, 
whereas the second equation governs the average size of the particles, 
indepoadently of their number in the averaging volume. 

* 
The weak point of the described formal introduction of m(t^x) (the 

first  approach)  is  that  m and  the  governing  equation  for  m contain 
inaccuracies that depend on the quality of the formula (4.3) for the source 
term V0, In order to make the definition of m independent ^of these 
inaccuracies, one can define m concurrently with Vp(d) and Sp(d) by the 
relation (4.12), which we write in the form 

m(t,x) v (d) = / (H3) g dV 
V 

(4.18) 

the Eq. (4.15) , and 

m(t,x)s (d) = /  g dS = SG 
F     S 

P 

(4.19) 

The   Eqs.    (4.15),    (4.18),    and   (4.19)    are   consistent   in   the   sense   that   Eq, 
(4.19)   is  a consequence of  Eqs.   (4.15)  and   (4.18). 

The exact expression for the source term T-  is 

U~h   I      Sd  dS   =||d VG VG 
(4.20) 

Therefore,   if  Eq.   (4.19) holds 

m 
r2=^S

P
(d)   d 

(4.21) 
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If we also use the exact average value d instead of the correlation <d> in 

the governing equation for d, then one ohtains from these relations and from 

the two Eqs. (4.13) by formal manipulation as above 

3t 
(rau) 

(4.22) 

— = - u-Vd 

Eqs. (4.2 1) and (4.22) are derived without any simplifying approximations 

for the source term.  When the equations are incorporated into the equation 

system (4.1) for numerical solution, then the average d will, of course, be 

teplaced by the corresponding correlation <d>. 

* 
The weak point of the second approach is that the two functions m and 

v  with the desired properties do not exist in general, and, therefore, one 
ha.s to use functions that satisfy the Eqs. (4.15), (4.18), and (4.19) only 

approximately.   The non-existence can be seen, e.g., by considering the 

ratio s /v , which according to Eqs. (4.18) and (4.19) is equal to 

s (d)/v (d) = / g dS/ / (i-e) g dV 
S       V 
P 

(4.23) 

The right-hand side of Eq. (4.23) obviously depends not only on the average 

d, but also explicitly on t and x.  Even in the special case where all 

* _ * 
particles are equal,  i.e.,  d = d = constant,  the ratio depends on the 

position of the grains, i.e., explicitly on t and x.  On the other hand, if 

g is a constant, then Eq. (4.23) can be, indeed, a function of d only, and a 

proper  function  v (d)  might  be  found.    (Actually,  g  can  be  only 

approximately a constant in order to Insure the differentiability of the 
average flow variables, see Section 2.4). 

Because the Eqs. (4.15), (4.18), and (4.19) cannot be satisfied 

exactly, one might as well define, as a third approach, m(x,t) by a 

reasonable formula and then seek such a function v (d) that satisfies the 

aboye mentioned equations approximately. (The other possibility, to choose 
v (d) and then define m by Eq. (4.18) amounts to the definition by Eq. 

(4.12). The corresponding ni has undesirable limit properties when some 

grains in the averaging volume are reduced by combustion to zero.) 

* 
Either of  the following two formulas define functions m(t,x) with 

reasonable limit properties : 
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I i-^-   !       gels}    . (4.24) 
id 

1=1 spi siav 

= HTT" /  gdV}     • (^25) 
1=1 pi V.flV 

i 

In these equations, m Is the number of grains or grain parts in V, s ^ are 

the surface areas of the grains, S^ are their surfaces, v ^ are the 

magnitudes of their volumes, and Vi are their volumes. The contribution of 

a grain that is reduced to zero volume is g(Ci(t) - x) , where 5i(t) is the 
location of the grain. When all grains are reduced to zero, then either of 

the formulas produces 

m(t,x) =£ g{£.(t) - x)   . (4.26) 
1=1 

If all grains have the same finite size, then the formulas reduce to Eqs. 

(4.18) and (4.19), respectively. Finally, If g is constant then the 

contribution to m of each grain that is completely inside V is one, and the 
contribution of a grain partially in V is less than one, in accordance with 

its location. Only for constant g, and all grains located inside V, the 

function m is independent of d. Therefore, the factorization as postulated 

by Eqs. (4.18) and (4.19) can be best approximated if the weight function is 

constant over most of the averaging volume. 

If m is defined by either of the Eqs. (4.24) or (4.2^), then one may 

select the volume correlation v (d) to fit the choice of m . The surface 

area correlation s (d) Is then obtained by the formula (4.15).   The 
lit     P 

selection of v (d) Is discussed in Section 4.7.9. 

4,2,2 Pressure Logarithm and Entropy. The equation system (4.1) 

contains two thermodynamlc quantities as dependent variables, namely, the 

density p and the specific internal energy e. One can replace this pair of 
variables by a different pair of thermodynamlc quantities and replace the 

first two equations in Eq. (4.1) by corresponding governing equations for 

the new pair. The variables can be chosen such that the new system of 

equations is better suited for numerical treatment. 

First, we notice that up to six equations contain the gradient of the 

pressure. The handling of the gradient terms can be simplified considerably 

if the pressure p itself is chosen as a dependent variable instead of p. 

The replacement reduces the total number of terms In the equation system. 

Second, one may replace e by another variably, e.g., by the specific 

entropy s, the specific enthalpy h, or the temperature T. These choices do 
not simplify the equations.  The number of terms does not change if s is 
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used Instead of e, but It does increase If h Is used Instead of e.  Choosing 

T as a dependent variable, one obtains the most complicated equations. 

Based on these considerations, we have chosen s as a second 

t!ior:nodynamlc variable. First, it does not complicate the equation 

system. Second, s is proportional to the logarithm of the temperature, 

whereas e is proportional to the temperature Itself. Therefore, if the flow 

contains large temperature variations, its representation in terms of s is 

■ .inch smoother and more amenable to numerical differentiation. (One can 

expect large temperature variations in certain Interior ballistics 

problems.) 

The relation between, s, p, and T is for Noble-Abel gases 

s - A. £n(T) - A2 J!,n(p) (4.27) 

with constant A, and A2. The Eq. (4.27) suggests that q=Jln(p) would be an 

even better choice than p as the other thermodynamic variable. If q is a 

fanc.tion of p only, then this replacement does not introduce any new 

complications in the governing equations. Our final choice of thermodynamic 

variables is, therefore, the specific entropy s [J/(k.g« K) ] and a pressure 

logarithm function q, which we define as 

q(p) - q1[jin(p/p1) + l]   ,   (Fa) (4.28) 

with constant q^ and pp 

The first two equations in the system of governing Eqs. (4.1), if 

expressed in terras of s and q, are 

ii = - u.7s +£=-B+Hr + ($+i|0 01 pi 
(4.29) 

a                  e 1                p - 
11 = _ u.Vq - £- [V-u + ^ BJ + — [e - e - e Hi F - — ($ + ij;)  , 
8t           p L     T J   e  L        s J    p      T 

q q            q 

where 
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1 r t B = - [ (1-a) V«u - (u-u)'V(l-a)] 

H - -| [(e + p/p) - (e + p/p)] 

r -i^r.-i^lpsCd)  <d> 
a p  2  a p VG p 

(4.31) 

and 

u  9 P (p , s) dp 
q     9p  dq 

9p (p,s) 
ps =^  

= aeCp^) dp 
eq "    3p  dq 

9e(p,s) 
es     3 s 

In the derivation of the equation for q, we used the relationship p e  = pp 

which can be obtained from the second law of thermodynamics (Hund).     In 

Eq.  (4.31),  dp/dq  = p/q^  by Eq.  (4.28),  and the derivatives of the 

thermodynamic functions are modeled by the equation of state correlation, 

described in Section 4.7.1. 

4.3  Final System of Governing Equations 

The governing Eqs. (4.1) can be expressed as follows in term of the new 

set of variables that were introduced in Sactlon 4.2. 

UF.  Hund,  Einfuhrung in die Theovetische Physik,   Bd.   4,   "Theorie dev Warme, " 
p.   135 ffs  Bibliographisohes Institut,  Leipzig,   1950. 
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^"-u.Vs+^-B+HT + C-t+f) 
d c pi 

Ll = - u.vq _ £_ (v. u + -J- B) + — (e-e-e H)r - — (♦■«) 
dt pq       T      eq      s     pq 

^ = - (u.v) u - ^ Vq - iu-*u)T   -  ii Adrag + ^^ + ^^ 

* 
P 

^ = - (*.v) * - _1 vq + | Ad   + Astress   , ((4.32) 
P      P 

= - V.(m u) 
d t 

* 
3d    *  *   . f2. = - u.vd + <d> 
d t 

* 
3 T    *  * 
3t 

u'VT + <T> 

with 

= - [ (1-a) 7»u - (u-u)«V(l-a)' 

a = 1 - v (d) m/VG 
P 

H = -i [(e + p/p) - (e + p/p)]       , |(4.33) 

F = i ^ 4. s (d) <d> 
a p VG p 

The partial derivatives ps, p , es, and e are defined by Eq. (4.31). The 
derivative pq = dp/dq is equal to p/q j if q is the pressure logarithm 
defined by Eq. (4.28). 

Models of the various correlation terms in Eq. (4.32) are discussed in 
Section 4.7. Their physical meaning is as follows: r represents the mass 
source due to combustion, $ represents the heat dissipation, f contains the 
heat conduction terms, e(s,p), T(s,p), and p(s,p) are thermodynaralc state 
functions, Ad    is the acceleration due to drag, \isc  is the acceleration 

stress due to vicosity, \UT^  is the acceleration due to turbulence, A t    is 
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the acceleration due to Intergranular stress and solid phase turbulence, <d> 

is the regression rate correlation, <T> is a correlation for the ^heat 
conduction between gas and particles, e is e at flame temperature, sp(d) is 

the average surface area of a single grain, and vp(d) is the average volume 

of a single grain. The variable <T> enters also the first two Eqs. (4.32) 

as an argument of the term ^. 

The correlations are defined in terms of volume or surface averages. 

Therefore, the models of the correlations should be different for different 

averaging volumes and/or different weight functions. However, because 

experimentally determined correlation models are usually reported without 

reference to any averaging, their relation to specific averaging procedures 

are difficult to determine. Therefore, the influence of their relationship 

on the overall accuracy of the interior ballistics model has not been 

established. 

4.4 Regions of Definition 

According to Section 2.3, the average quantities describing gas 

properties are defined at all interior points of the gun tube, except for 

boundary regions the shape of which depends on the averaging volume. The 

average quantities are the density ap, the energy density ape, and the 

momentum density vector apu. Consequently, all other quantities that are 

defined in terms of these quantities are defined in the same regions. Such 

quantities are, e.g., e, u, s, q, T, etc. The ^porosity a has the same 

region of definition. The grain number function m also can be defined in 

the same region by using the extension m = 0 if the averaging volume 

contains no grains. 

Average quantities describing grain properties are defined only at 

reference points for which the averaging volume conta^jps grainy. ^Therefgre, 

the set of average conservation equations for (l-a)pu, (l-a)p, d, and T is 

not defined in regions without grains (see Section 3.3). By a reformulation 

of the conservation equations, we obtained in Section 4.3 an equivalent set 

of governing equations (4.32). This set has no singularities at a = 1 and 

it enables one to calculate nominal grain properties at all interior points 

where the gas properties are defined. Therefore, one can extend the 

definition of average grain properties as follows. The grain properties are 

defined by the averaging integrals (see Section 2.2), if the averaging 

volume contains grains. In other regions, the grain properties are defined 

as the solution of Eqs. (4.32). In ijitejior ballistics problems this 

definition amounts to an interpolation of u, d, and T across regions without 

grains. When the grains have been reduced to zero volume, one can still 

calculate their motion, which now corresponds to a so-called "dusty gas" 

model. In such a gas, the dust follows the gas flow according to a drag 
law, but it does not influence the gas flow itself.  Using the set (4.32) as 
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governing equations one obtains regions of "dusty gas" where m > 0 and v (d) 

= 0.   In regions ^with m = 0 and v (d) > 0 the equations provide an 

interpolation of u, T and d in space and time between regions with grains. 

In the boundary regions discussed in Section 2.3, none of the average 

quantities are defined and, consequently, the differential Eqs. (4.32) have 

no meaning in these regions. Strictly speaking, one should provide boundary 

conditions for Eqs. (4.32) at the boundaries 1/2 away from the tube walls 

and If2 or 1/2 away from the breech and projectile, if the average volume is 

defined as a sphere (2.47) or cylinder (2.49). The meaning of the solution 

of the equations in the boundary regions is not obvious if one prescribes 

boundary conditions on the solid boundaries instead. Section 4.6 contains a 

discussion of the boundary condition problem. 

4.5  Initial Conditions 

Typical local initial conditions for the local dependent variables in 

interior ballistics problems are constant state conditions over the entire 

region. Because averaging of a constant produces the same constant, the 
intial averages in most cases are simply equal to the local values. 

Deviation from a constant initial state typically involves either a 

porosity ^o that is not uniform, or a non-uniform grain size, i.e., a non- 

uniform d. In these cases, one cannot use the local values of m and d as 

initial values. Instead, the initial profiles must be computed by averaging 

the local values, whereby the same averaging volume V and weight function g 
should be used as for the correlation models and boundary conditions. 

In regions where intially the grain number m is zero one has to 

extrapolate or interpolate the values of u, d, and T . The initial 

grain velocity is normally identically zero and one can use u = 0 for the 

extrapolation. Likewise, the initial grain surface temperature is usually 

constant, and the same constant can be used for extrapolation. The 

regression distance may not be constant if different sizes of grains are 

located in different regions. In such cases, one has to use a common sense 

extrapolation that produces a smooth initial surface d (0,x). 

In the boundary regions, "correct" initial values cannot be specified 

for reasons explained in Section 4.4. The proper choice of these initial 

values depends on the method of treatment of the boundary regions. However, 

one can assume that any reasonable treatment will produce uniform values, if 

the local function values are uniform. Therefore, one may specify in the 

boundary regions the same uniform initial values as in the interior 

region. If the initial conditions are not uniform, then one has to design 

such an extrapolation of the averages to the boundary that is consistent 
with the treatment of boundary conditions. 
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4.6  Boundary ConditIons 

A theory that could provide guidelines for the formulation of boundary 

conditions for averaged equations has not been developed. Therefore, 

interior ballistics calculations usually are done with plausible ad hoc 

assumptions about boundary values. In this section, we shall outline the 

requirements for a boundary condition theory and suggest a possible approach 
to the formulation of such a theory. Because the theory has not been 

developed, we shall also discuss ad hoc boundary conditions. 

Discussing boundary conditions for averaged differential equations in 
confined volumes, we have to distinguish between two boundaries. For the 

purpose of the present discussions, we call them the outer boundary and the 

inner boundary, respectively. The outer boundary consists of the solid 

walls of the volume. In interior ballistics the solid walls are the tube 

walls, the breech, and the base of the projectile. The inner bundary is the 

limit of validity of the average differential equations. As discussed in 

Sections 2.3 and 4.4, the inner boundary is located a finite distance inward 

from the outer boundary. The magnitude of the distance depends on the size 

of the averaging volume. If the averaging volume is a sphere with the 

diameter £,, then the inner boundary is located £ /2 away from the tube 

walls, breech, and projectile. If the averaging volume is the cylinder 

described in Section 2.3, then the inner boundary is H /2 away from the tube 
walls and £ /3 away from the breech and projectile base. Let the region 

between the outer and inner boundaries be called the boundary region, and 
the region inside the inner boundary be called the inner region. 

Classical theory for the discussion of necessary boundary conditions, 

well-posedness, and existence can be only applied to the inner boundary. 

Gough (1974) presents some of the discussion, implicitly assuming that the 

conditions on both boundaries are identical. The assumption is permissible 

if the size of the boundary region is small compared to the size of salient 

structures of the flow field. Because the size of the boundary region must 

be large compared to the size of propellant grains (see Section 2.3), it is 

generally not small compared to, e.g., the gas boundary layer. For interior 

ballistics flows, therefore, one cannot assume that boundary conditions on 

the inner and outer boundaries are identical. 

Ehysical boundary conditions, such as u-uwaii> are only given for the 

local gas phase functions on the outer boundary. The only physical boundary 

condition for the particles is that no single particle can penetrate the 

wall. In addition, one may also formulate collision conditions for single 

particles impacting on the wall, i.e., on the outer boundary. 

A boundary condition theory for average equations has to bridge the gap 

between the outer and inner boundaries. It should provide a complete set of 

boundary conditions for the average quantities on the inner boundary in 

terms of the local physical boundary conditions on the outer boundary. 
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One possible approach to the problem is by construction of a 

continuation of the solution into the boundary region. If such a 
continuation is established, then one has reduced the problem to the 
formulation of boundary conditions on the outer boundary only. The simplest 
method to obtain a continuation is to define it as the solution of the same 
differential equations and correlations that are valid in the inner 
region. Then one needs only conditions on the outer boundary and disregards 
the existence of the inner boundary. This is the usual approach in two- 
phase flow calculations. It has the deficiency the one has no guidelines 
how to formulate the boundary conditions for the continued functions, 
because they are neither the local functions nor the average functions. 

A more promising continuation may be obtained by changing the 
definition of the averages such that it includes the boundary region. This 
requires that the averaging volume V has a shape that depends on the 
position x of the reference point. The conservation equations of Section 3 
are derived under the assumption of a fixed size and shape of V. The 
averages defined for a variable V satisfy a different set of differential 
equations. The continuation into the boundary region could be computed by 
solving Eqs. (4.32) In the Inner region and the new set in the boundary 
region, and by matching both solutions at the inner boundary. The boundary 
conditions on the outer boundary then represent conditions for averaged 
functions and can be modeled accordingly. 

Because a theory of the described type is not available, we now 
formulate ad hoc conditions that may be used for the differential equation 
system (4.32). 

The local boundary conditions for the gas are: U = Uxjoii, a condition 
for the temperature prescribing either T = Twall or 8T/8n = (3T/3n) waL1, 
where n is the normal to the wall, and the mass conservation equation. In 
the spirit of interpreting the solutions of the differential equations as 
averages, one would not directly use these conditions as boundary 
conditions. Instead, some interpolation is needed that reflects the 
averaging.  We propose the following approach. 

Let £/2 be the distance between the inner and outer boundary and let 
e be an estimate of the thickness of the gas boundary layer. Let $ be a 
function with prescribed local boundary value | wall and ni be the unit 
normal to the inner boundary, pointing outward with respect to the 
interior. We then use the following boundary condition on the outer 
boundary for gas properties 

*outerb " ij  ^innerb + Ninnerb^i) + e* wall Mf + e) .    (4-34) 
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Because I Is larger than a particle diameter (see Section 2.3), the boundary 

value on the outer boundary, when computed by Eq. (4.34), will approach the 

local boundary value only if the particles are small compared to the 

thickness of the boundary layer (e»il/2). This may be the case, e.g., when 

the flow of wear reducing additives is investigated. If the particles are 

large compared to the thickness of the boundary layer (£/2»e), then the 
outer boundary value given by Eq. (4.34) approaches an extrapolated value 

from the inner boundary. 

Eq. (4.34) may used to determine the boundary values of u, and T or 
9T/9n.  The average gas continuity equation may be used to close the set of 

boundary conditions for gas properties. 

The formulation of a boundary condition for the average particle 

velocity presents a dilemma. On one hand, the condition should prevent the 

particles from penetrating the wall. On the other hand, the average 

particle velocity at the outer boundary may very well point into the wall, 

merely indicating an accumulation of particles within the averaging 

volume. As an ad hoc measure we disregard the second possibility and 

suggest for the average particle velocity at the outer boundary the 

following formula. Let uDE be the solution obtained from the differential 

equation system (4.32) at the outer boundary, uwall be the velocity of the 

wall, and n^ ii be the unit normal to the wall pointing outward. Then the 

outer boundary value of u is 

uouterb 
UDE ~ "wall max(0,(uDE - U^P"^]^ (4.35) 

The resulting uouterb satisfies the condition 

(uouterb " "wall^^all < 
(4.36) 

which on the average prevents the particles from flowing through the wall 

and permits at the same time the particles to leave the region near to the 

wall or projectile. 

The quantities m, d, and T are computed by solving the corresponding 

governing equations at the outer boundary. 

4.7 Models of Correlation 

4.7.1 Equations of State. For the derivation of the average equations 

in Section 3, we used the averages of two thermodynamic quantities, namely, 

the density p and the specific internal energy e.  The conservation 
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equations contain two other thermodynamic quantities, the pressure p and the 
temperature T.  (The latter enters the heat conduction term and may be also 
used in other correlations.)  They were assumed to be related to e and p by 
equations of state, i.e., by 

p ■ p(p ,e) 

and }  (4.37) 

T = T(p,e) 

Generally, one uses in Eq. (4.37) the same functions that hold locally. 
This introduces errors in several terms of the average conservation 
equations. 

As an example, let us consider the error term in the average momentum 
equation. The error made by approximating the volume average of the local 
pressure by the first equation in (4.37) is from Eq. (3.31), Section 3.2.2, 

q,, - ~V[a(t,x) (p(t,5(x)) - p(t,x))]   . (4.38) 

As discussed in Section 3.2.2, to minimize the error by a proper choice of 
the function p, we need to minimize the errors in the functional values as 
well as in the gradient values. However, the pressure function enters the 
equation system in various places and in different combinations. Therefore, 
the use of the local equations of state is probably as good an approximation 
as any. (brrespondingly, one also uses the local equations of state when 
the entropy s is introduced as a dependent variable. 

All thermodynamic variables (temperature, pressure, density, energy 
entropy, and enthalpy) are conpletely determined in terms of two variables 
if two "equations of state" are provided by postulate or measurement. Using 
the two given equations, all other relations can be derived from the laws of 
thermodynamics, which provide the following three systems of differential 
equations (Hund): " 

'^'^ -  1  T3
2P(P.T) 

9p       p2    3T2 

c _ c = X. r8p(p,T)12/r3p(p,T)1 
P   v   2^31  J /l  3p j 

(4.39) 
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(cD and cv are the specific heats (J/(kg»K) for constant pressure and volume 
respectively), 

8e(p>T) = _ 1_ r T 3p(p.T)  A 
3p 3T 

(4.40) 

and 

3e(ptT) 
8T 

- = c 

3s(p>T) 
8p 

1 3 p(p . T) 
2  8T 

3T   ' T v 

(4.41) 

An   equation of   state  that  is  often used  in  interior  ballistics  is   the 
ffoble-^bel equation 

p^T>=iTT^r (4.42) 

where R - 8.3143 J/(mol«K) is the universal gas constant, M (kg/mol) is the 
molar mass, and n (nr/kg) is the covolume. From Eqs. (4.39) and (4.42) one 
finds that for a NDble-A)el gas 

c„ = cv(T) 

and (4.43) 

c„ = Cv(T)+M 

Therefore, in order to completely specify the gas, one has to provide, in 
addition to Eq. (4.42), a temperature function cv(T). Alternatively one can 
specify instead of cv(T) a function Cp(T), or a function Y(T) that gives the 
ratio c /c = Y(T).  In the latter case, the specific heat functions are 
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(4.44) 

We assume that y (T) is constant, and obtain with this assumption the 
functions e(p,T) and s(p,T) by integration of Eqs. (4.40) and (4.41). After 
some manipulations, one can express the quantities of interest in terms of p 
and s, as required by the system of governing Eqs. (4.32).  The results are 
listed below. and tR  cxn^ pn     are  reference  values which determine  the 
integration constant for the entropy. 

T(p,s) =TR(|-) 
]T-exp(|l^s) K 

1   R a, e = —r~ T 
y-l M 

rR T , \-l 

J/kg 

kg/m3  , 

(4.45) 

8T(p,s) = y-l T 
9p      T  P 

3T(p,s) = Y-l M T 
9s     Y  R 

9e(p,s) m Y-l e 
8p     Y  P 

9e(p,s) = i T 
8s    Y 

(4.46) 

(4.47) 

and 

8p (p,8) 
9p 

1 P 

P 
(W 

3p (p,s) 
3s 

= - M 
R 

Y-l 
Y 

(4.48) 

P (l-np) 
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The square of the sound speed Is 

2 _  £  1 
a " Y P l-np 

m2/s2 (4.49) 

The specific entropy, expressed in terms of pressure and temperature, is 

1-Y 
-S^Wt(ir)~l  . J/arB (4.50) 

4.7.2 Acceleration by Gaseous Stresses. The governing equation for 
the average gas velocity in the equation system (4.32) contains the terms 
A • and ^ b. The former term represents the acceleration due to laminar 
viscosity. The latter term represents the acceleration due to turbulence. 
A simple turbulence model is a Reynolds stress model with viscosity 
coefficients depending, e.g., on temperature. Then the forms of Avisc and 
Aturb are identical (see Eqs. (B.9) and (B.34)). We restrict our discussion 
to the term A^ . More complicated turbulence models are possible (see 
Gibeling et al^  but will not be discussed in this report. 

According to Section 3.3, Eq. (3.63), the viscous acceleration term is 

Avisc =iFV (an)    ' 
(4.51) 

where 11 models the gas volume average of the local viscous stress tensor ^ 
ff.   The local tensor is given in terms of the strain rate tensor E by 

(Tsien, p. 13) 

ff = 2iiE+(X--jy) trace (E) I (4.52) 

where y and X are the shear viscosity coefficient and the bulk viscosity 
coefficient, respectively. Both are assumed to be functions of 
temperature.  The strain rate tensor is defined by 

1 = i (Vu + (Vu)T) (4.53) 
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The modeling of the average viscous acceleration term involves models 

of the average viscosity coefficients and a model of the average strain rate 

tensor E. 

The models of the average viscosity coefficients are purely 

empirical. A convenient set of formulas is the following generalization of 

the so-called Sutherland formula: 

T1.5 
M(T) =%+lJii7^T      •     Pa-S     • 

and )   (4.54) 
1.5 

X(T)   - ^0 +X1 ^-^ ,       Pa-s       . 

The generalization consists of the addition of the parameters \i and X , 

thereby including in the model the constant functions. 

The average strain rate tensor E is usually modeled by applying the 

local formula (4.53) to the average velocities. Then n is obtained by using 

Eqs. (4.52) without the tildes and (4.54) with temperature T(p ,e) calculated 

from the average values of p and e. The approximation error is Eq. (3.32), 

Section 3.2.2, divided by ap, i.e., 

^"^T7*  / Bg [ff(u,p,i) -n(u,p,e)]   dV  . (4.55) 

The error part that comes from the replacement of p and e and p and e is 

probably smaller than the uncertainties of the empirical formulas (4.54). 

However, the error part that comes from the use of the average velocity in 

Eq. (4.53), can be large because the formula involves derivatives of the 

velocity and in a viscous two-phase flow the local derivatives can be quite 

large. The integration in (4.55) does not necessarily cancel out 

corresponding large local undulations of the integrand. An empirical 

correlation based on careful experiments certainly could enhance the 

usefulness of the described model of the viscous acceleration term. 

4.7.3 Heat Dissipation.  All the heat dissipation terms are denoted by 

$ and they enter the governing Eqs. (4.32) for the specific entropy s and 

for the pressure logarithm function q.  According to Sections 3.2.3, 3.3, 

4.1, 4.2, and 4.3 the term $ models 

^TVG //S* 
dv  ' ^•56) 
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where the local heat dissipation function $ is given by (Tsien , p. 15) 

$ = 2 y trace (E2) + (X - -|y) (trace E)2 W/m- (4.57) 

E is the local strain rate tensor defined by Eq. (4.53), and \i  and X are the 
local shear and bulk viscosity coefficients, respectively. 

Usually $ is defined in the same fashion as the equations of state 
(Section 4.7.1), i.e., by calculating a $ with the same formula as *, but 
using the average quantities instead of the local quantities. The modeling 
of the viscosity coefficients is discussed in Section 4.7.2. In Cartesian 
coordinates, the formula is (Tsien , p. 15) 

8^2  9U, 2 8U. 2 

j     1 i 
(4.58) 

whereby summation over i and j is assumed. 

Even without considering turbulence, Eq. (4.58) likely underestimates 
the value of the expression (4.56) because local undulations will generally 
greatly increase the value of the integrand. If a difference exists between 
the average velocities of the phases, then local velocity gradients entering 
Eq. (4.56) are particularly large, but are neglected in Eq. (4.58). 

In order to estimate the effect of local gradient variations, we 
compute the heat dissipation term in a linear flow field superimposed by an 
undulation. Particularly, we assume the following velocity components in 
Cartesian coordinates : 

TT . Au   . A /     \ Uj = U + -T— x + u(x,y,z)   , 

U2 = u(x,y,z) (4.59) 

uo = u(x,y,z) 

where the undulating part is given by the formula 

2ir 2/T 2B u(x,y,z) = U sin (-=— x) sin [•=— y) sin [•=— z] (4.60) 

69 



Sect. 4.7.3 
The local heat dissipation for this flow field is according to Eq. (4.57) 

• - -^r [4 y (<t)+(t)+<t>+2<t)+2(()Z+2<|>) pT L2   Yxx  yyy  rzz   rxy   Txz   yyz 

+ U - l-y) 7 ((ji + $      + * )21 3   4 Txx  Tyy  Tzz J 

(4.61) 

where 

2Tr   0 r 2v  „i   „j_ r2ir  „^   „J_ /'2TT   _
,

I   ,   0 AU *xx = U f 2 cos (f x) sin (f y) sin (^L z) + 2 |u   . 

^yy = U f 2 sin (f x) cos (f y) sin [f z) 

*zz = U |L 2 sin (|!L x) sin [^- y]   cos [£. z) ,      (4.62) 

*xy = U f sin (fL (jcfy)] 8in (|L z] 

Kz  = U f sin (|!L (x+z)] sin (f yj 

^yz = " f sin [f x) sin ^ (y+z)) 

Next, we assume that the averaging volume is a cube with side lengths 
nl, and that the weight function g is constant. For that case, the integral 
(4.56) yields 

The first term in the brackets in Eq. (4.63) is the contribution of the 
linear field to $. The second term is the contribution of the superposed 
undulations. One sees that for Au/(nL) " U/L the contribution of the 
undulations is about 40 times larger than that of the linear flow field. 
Interestingly, the contribution of the undulations does not depend on the 
number of periods in the averaging volume, but only on the amplitude U and 
wave length L. The example shows that the usual approximation of $ by the 
formula (4.58) can be grossly in error. 
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A model of the contributions of undulations in two-phase flow due to 

the difference between u and u can be derived in the same manner as Eq. 
(4.63). To simplify the formulas let us chose the coordinate system such 
that the x-direction coincides with the direction of u-u. Then the velocity 
undulations may be approximated by 

2n 2IT 2lT 
Uj   = (u-u)   sm (— xj   sin [— yj   sin [— zj 

u2  = 0 

u3  =0 

(4.64) 

where D is the distance between the centers of the particles. 

let m be the number of partjcles in the averaging volume. We associate 
each maximum of the function u. with a particle. Then there are four 
particles in the elemental volume DJ and m = 4V/D .  Therefore, 

D = (4V/m) 1/3 (4.65) 

The contribution of the undulations (4.6 4) to the dissipation function is 
one third of the contribution of the undulations (4.59) in all velocity 
coordinates, as can be verified. Therefore, a reasonable model for the 
contribution due to velocity differences is 

,_        1     ,     *  2rm ^2/3     2r5 
<$> = — (u-u) [-^J       TT Ij y 4-x) W-(kg.K) (4.66) 

In a computer program where m and V are not available, one can use in Eq. 
(4.66) the quotient m/(VG) instead of m/V without changing the magnitude of 
<$>. The correlation (4.66) probably gives only the order of magnitude of 
the contribution due to velocity differences in the flow. However, it 
certainly is better than the usual assumption <$> = 0. In relation to the 
error term involving the dissipation function in Eq. (3.51), Section 3.2.3, 
the function <$> approximates the error between the volume average of the 
local dissipation function and the average dissipation function $(E). 

The models for the turbulent dissipation function _vary widely. A 
simple model for $T is one which has an identical form to $ (Eq. (4.58)) but 
with different viscosity coefficients.  GLbeling et al.,  suggest a 
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model based on the algebraic relationship among a turbulent length scale, 

turbulent viscosity, and turbulent kinetic energy. 

The complete dissipation term that enters the governing equation is the 

sum of Eqs. (4.58), (4.66), and the model for *„: 

$ = 1=, $(E) + <$> +-^ $T   ,  W/(kg.K)   . (4.67) 
pT pT  T 

The approximation error Is the difference between the expressions (4.56) and 

(4.67). 

4.7.4 Heat Conduction. The heat conduction term SI enters the 

governing equation, Eq. (4.32), In two places. The term itself models at 

least two phenomena: the heat conduction within the gas defined in terms of 

the average quantities, and the heat conduction from the gas to the solid. 

Depending on the model for the deviations of peu from peu, we also can have 

a turbulent heat flux vector defined in a similar manner as the average heat 

conduction.  We shall discuss each of these models in turn. 

Locally, the heat conduction within the gas is assumed to be governed 

by Fourier's law 

Q = - K(T)vf   ,  W/m2   , (4.68) 

where <(T) is the thermal conductivity coefficient which depends on the 

local temperature. The corresponding average heat conduction term In Eq. 

(4.32) is a model of 

" ^T V-tw { ***  ^ = ^T V*tvG ( ***&  V! dV]    '       (4-69) 

The volume average in expression (4.69) is usually modeled as Eq. (4.68) 

without the tildes,' that is, the local temperature T is replaced by the 

average T (obtained from the average values of s and q by the equation of 

state correlation. Section 4.7.1), and the local thermal conductivity 

coefficient i<(f) is replaced by the average coefficient K(T). The latter 

can be modeled by a generalized Sutherland-type correlation, 

T1.5 
K(T) = KO + K1 ^^   ,  W/(m.K)   . (4.70) 
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An  estimate   of   the  error incurred  by using the model  instead  of  expression 
(4.69)  can be obtained as follows when V„0_ is connected: 

CQ = ^V-[^   /PgQdV-aQ] = ^V,fvG    '   Pg^TdV -aKVT] 

(4.71) 

apT 
V* [aicVT - a<VT] , 

where    T =    T(s,q)  and    k =    k( T)  are    mean   value    points    of    the    integrand. 
Expanding Eq.   (4.71)  further one obtains 

C0 = —^rV» [OOC-K) VT + aicV(T-T)] 
"Q      apT 

(4.72) 

and 

CJ   <   max  1-^—V. [a(K^c)VT + aKV(T-T)| 
Q1 'apT       L l 

(4.73) 

The term involving the difference K-K   can be reduced if  the model parameters 
K   , <,, and K„ in the correlation  (4.70) are chosen such that 

o        1 2 

<W Jn    !  tZ<   M ' aVG 
(4.7 4) 

The  term involving V(T-T) reflects  the modeling error  due  to  local 
undulations of the gas temperature. 

The heat conduction between the gas and the particles is represented in 
Eq. (4.32) by a model of 

1  1 1  1 
ctpT VG k   /  gQ711 dS = -^ / g K  VT-n dS sp    apT VG sp (4.75) 

The integrand in Eq. (4.75) is the heat flux into the particles, 
the surface averaged heat flux by 

*e = -^ /  g K VT-n  dS    ,  W/m2 SG sp 

We define 

(4.76) 
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and rewrite expression (4.75) as 

e   . (4.77) apT VG 

The  quantity  e has  been  modeled  by  various  different  experimental 
correlations.  A relatively simple formula is (Gibeling et al.) 

* 
<e> = -5- s  [h (T-T) +h (T-T)]   ,  W/m2  , (4.78a) 

SG p  c       r 

* 
where T is the average grain surface temperature.  The coefficients h and 
hr  in  Eq.  (4.78)  model  heat  transfer  by  conduction and radiation, 
respectively.  Gibeling et al.   suggest the following expression for the 
coefficients in case of spherical particles and Nobel-Abel gas : 

h        .JL-H- 0.2(^1 (^>2|u4lV/3 ,       W/OA)       . (4.78b) 
D /2       Y       uD /2 
P P 

* 
where D is the diameter of the particles, and y is the shear viscosity 
coefficient (Section 4.7.2), and 

hr = * aSB(TfT) (T^+T2)   ,  W/(m2K)   , (4.78c) 

where e is the particle emissivity and ac = 5.67032» 10~8 Wm_2K~^ is the 
Stephan-Boltzraann constant. 

The model <e> should be consistent with the model <T> of the grain 
surface temperature rate of change. The relation between both models is 
discussed in Section 4.7.10. 

The model of the significant deviations of pen from peu (denoted by QT, 
see Section 3.3) can have different forms.  One model of the turbulent heat 

13 5 flux vector, given by Ishii  and Gibeling et al.,  is 

QT = - KT[VT - I« (^ - T)]    ,  W/m2   , (4.79) 

* 
where X^ is an average temperature on the interface (a function of T and T) 
and <„ is given by an algebraic formula involving an effective viscosity and 
Prandtl number. 
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The heat conduction term f is the sum of the three described models, 

>p  = f  gas + ^particle + ^turb 

-L_ V- (CXKVT)   - -AF S^ <*e>  " 
apT opT  VG 

—^ V* (oQm) 
apT VT 

(4.80) 

W/(kg.K) 

4.7.5 Acceleration by Drag. The acceleration by drag between gas and 
particles enters the governing Eqs. (4.32) for the velocities u and u. The 
term is defined by (Section 3.3) 

A        1   1  n Adrag '" (1-cOp VG u 

where D models 

VG {  gtnsp^-^ 
S 

n •nl dS 
sp J 

(4.81) 

(4.82) 

p and H are tbe local pressure and viscous stress tensor, and p is the 
average pressure. In interior ballistics applications, the terra is modeled 
by experimental correlations that are available.for single particles (e.g., 
spheres) and for packed beds of particles. For situations between these 
extremes one has to interpolate. 

In order to see how the drag coefficient c^ for a single sphere relates 
to AJ„„„, we consider a situation where the m identical particles do not 
interfere with each other. Then the absolute value of the drag force acting 
on a single particle is 

Fl =^ 1/ glnSn
(P~p) " nsn,ff] dS 

m S sp sp 

(4.83) 

VG /, N I. I 
— <1-a) P lAdragl 
m 
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In terms of the drag coefficient cD, the force is (Schlichting, p. 15) 

|F| = 4 cn lu-u|2 a p    , (4.84) 

where a  is the frontal area of the particle.  Eliminating JFJ between Eqs. 
(4.83) and (4.84) one obtains 

AJT.0„ = TT c_  u-u  a TT-  , (4.OD; I drag!   2    u  >        I   p VG 1-a 

or,   using Eq.   (4.12),   Section 4.2.1, 

Kdr-gl " K I-4!2 ^ • (4-86) 

p 

The drag coefficient for a single sphere can be approximated by 

cD = 24/Re + 0.4  , (4.87) 

where 

R = |u-u|  p D (d)/y (4.88) 
ell     p 

is  the  particle  Reynolds  number  and  D (d)  is  the average  particle 
diameter.  (About the approximation (4.87), see Figure 1.5 in Schlichting , 
P. 16)}5 

Substituting the expression (4.87) i^pto (4.86) and observing that the 
acceleration is in the direction of u-u one obtains for non-interfering 
spheres the Reynolds formula 

Reynolds = ^ ^ ^•2|U-SI + 12 -^ ' (4-89) 
v (d) pB(d) 
P P 

1  A'  inH.    schlichting.    Boundary   Layer   fheovy,    4th   Ed.,    MoGraw-Hill   Book   Co., 
New      York,   1960. 
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For a packed bed one finds, e.g., the Ergun correlation (Gibeling et 

al., pp. 15 and 30) 

Ergun 

* a (d) „ ,        A 
= (u-u) -2-^-4-^ ( 1-75u-u + 150(l-a) 

v (d) J a 
P 

pD_(d) 
(4.90) 

In order to interpolate between both formulas one may assign limits for 

their validity. For instance, one could assume that the dispersed sphere 

formula holds for a > 0.9, and the compacted sphere formula holds for a < 

0.65.  Then the acceleration term is 

drag 

A    ,, for a > 0.9 
Reynolds 

4[(a - 0.65)  A^^ + (0.9-a)^^]  for 0.65<a <0.9 

A,, for a < 0.65 
irgun 

(4.91) 

The quoted limits are arbitrary and may be changed, if experiments are 

available. Also, other than the Ergun formula may be used, if experimental 

data indicate a better approach. 

4.7.6 Acceleration by Granular Stresses. Acceleration by granular 

stresses enters the governing Eq. (4.32) for the particle velocity u. The 

term is formally defined by (see Section 3.3) 

stress 
(l-cO* 

v«[(i-a)n] + 
(l^a)p 

v.[(i-a)n J (4.92) 

The second term of Eq. (4.92) represents the acceleration of the 

particulate phase by solid phase turbulence which is defined by Eq. (3.46), 

Section 3.2.2, and may be modeled by a solid phase turbulent stress tensor 

11 . Because the density of the solid phase is much larger than that of the 

gas phase and the sizes of the propellant grains are large, the turbulence 

of the solid phase is assumed negligible and H„ is set equal to zero. 

In the first term of Eq. (4.92) the variable II models 

1 
1-a VG 

/ (i-e) g (n +pi) dv (4.93) 
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(see Eq. (3.44)). It is interpreted physically as the effect of grain 

interaction with grains. Without such an interaction the stresses 11 inside 

the grains would be equal to the negative of the surrounding gas pressure 

or nearly so, and the acceleration term A8tress could be neglected, except 

for turbulence considerations . 

Generally in interior ballistics, one makes two assumptions about the 

model II of the average integranular stresses. First, one assumes that it is 

a function of a only and, second, one assumes that it is a diagonal matrix 
i .e., 

n - I R (a)    . (4.94) 

The second assumption means that the stresses have the effect of a pressure 

that acts on the particles in addition to the gas pressure. With these 

assumptions, one obtains from Eq. (4.92) for the acceleration 

Astress ^^-[^ Va)] V(1^)   * (4-95) 
P 

The derivative term in Eq. (4.95) is interpreted as the square of the sound 

speed a in the dispersed phase, and Agt;resg is expressed as 

= - a2(a) -L-Vd-o)    . (4.96) 

The modeling of Astre is reduced by these assumptions to the modeling of a 

sound speed function a(a) . The sound speed can be measured in packed beds 

and in suspended particle flows, so that the model can be tested in these 
special cases . 

*/ x * 
The function a(a) should increase with higher particle density (l-a)p, 

i.e., with decreasing a.  Also, as a approaches one, the function should 

approach zero.  Let a8p be the sound speed within a particle and let us 

assume th^t for a = a. all particles touch each other, so that a(a.) = 

g8 . Let a(a) become zero at a = ou* ^* '^en a  reasonable model for 
a(a) is 

al~ ao      0L2~a 

* a    [ J   f )       for a     < a  < a„       , 
a(a)  = s^a  "V     a2^1 0 2 (4.97) 

0 for a„ <  a 
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In Eq.  (4.97),  the value a = a  corresponds to a highest density (1- 

a )p that can be achieved by compacting the particles.  If a - 0 then one 

assumes that the particles can be crushed and compacted to a solid mass with 

the density p.  The last factor in Eq. (4.97) merely lets a approach zero as 

a approaches a„.  Thus, one assumes that for a. > a*  particle Interaction can 
be neglected.  Gibeling et al.,  uses a similar formula in which a = 0 and 

the second factor is set equal to one.  Using that formula, one sets a(a) 

= 0 for a > a..  It seems that a continuous transition to zero, as provided 

by our formula (4.97), is more realistic. 

4.7.7 Burning Rate. The burning or regression rate directly enters 

the governing equation for the regression distance d in Eqs. (4.32). The 
corresponding term is defined as the surface average of the local regression 

*       ~    * 
rate  9d/3t =  (u  - u)*n    (see  Sections  3.1.2  and  (3.2.1)  and  is 

sp      sp 
approximated by 

* 
<d> « ^ / g |f ds    . (4.98) 

P 

The linear regression rate can be measured, e.g., in closed bomb or 

strand burner experiments. The experiments show a dependence of the burning 

rate on the gas pressure, on gas velocity (erosive burning) and on the time 

derivative of the pressure (dynamic burning). Best established is the 

dependence of the burning rate on pressure, which is modeled by the equation 

B. 
d = B + B.p (4.99) 
s   o   lr 

with constant B0, B^, and B2.  The dependence on the relative velocity ju-u| 
and on the pressure change 3p/3t can be incorporated into the model equation 

either as additive terms or as a factor.  The simplest model <d> is obtained 

by neglecting these dependence and setting <d> equal to d , i.e., 
s 

0 for <T> < T,  ,_ 
ignition 

<d> = ,, . (4.100) 
^2      * 

B + B^   for <T> > T.  . . 
o   1 ignition 

The largest uncertainty of this model comes from the experimentally 

determined model parameters, and from the assumptions that erosive and/or 

dynamic burning is, or is not important. An averaging error is also 

introduced by the use of the equation of state function p(s,q) in Eq. 
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(4.100).  However, the error is likely to be negligible conpared to the 
general Inaccuracy of the model function.  These errors are included in the 
error estimate (3.22), Section 3.2.1. 

4.7.8 Source Tenas. Jn this section, we discuss terms in Eq. (4.32) 
that are associated with the burning of the propellant. They are 
characterized by the factor <d>, which represents the regression rate 
correlation and is discussed in Section 4.7.7. Because of this factor, the 
source terms are equal to zero if no burning takes place, and they represent 
sources of mass, energy, and momentum if the grains are burning. In the 
governing Eqs. (4.32), the terms have the common factor r and they enter the 
equations for s, q and u.  The factor T  models (Section 3.3) 

* * 

*fvG   { g("sp -u)-nsp dS   '  1/s  ' (4-101) 
p 

and is defined by 

r-±||§<-d> • (4.102) 

In Eq. (4.102), SG can be eliminated using the relation (4.19), Section 
4.2.1.  The result is 

r-olr?G8p<3) <,d>    • (4-103) 

as stated by Eq.   (4.33). 

The approximation error in Eq. (4.102) is that of the correlation <3> 
(see Section 3.2.1).  In the expression (4.103) one has, in addition, errors 
associated with the representation of the weighted surface SG by the product 
ms .  Because the representation is part of the definition of m (see Section 
4.2.1), it does not formally introduce new errors. 

^  The governing Eq. (4.32) for the gas velocity contains the source term 
(u-u)r.  The term models 

Z~Tir   I   (u-u) g [(u -u).n  ]  dS   ,   m/s2   . (4.104) a p VG ' sp    sp 
P 

The error in the governing equation caused by the model (4.103) is 
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(4.105) 

The error is zero if all grains have the same velocity and do not rotate. 

The governing Eq. (4.32) for the entropy contains the source term HP. 
The terra is derived under the assumption that the approximation 

g e (u  - u)« n  dS 
s 

6    sp      sp 
P 

g (u  - u)»n  dS 
s     sp      sp 
P 

(4.106) 

holds.  Eq. (4.106) is indeed an identity if the local specific energy e of 
fhe gas released from the burning propellant surface is equal to a constant 
e.  This is a common assumption in interior ballistics.  The constant e is 
the specific energy of the gas at "flame temperature", i.e., 

;=-^T 
y-l M flame  Y

-
1 

a P 
g I    ,  J/kg (4.107) 

where g is the standard acceleration 9.80665 m/s and 

h  = Tflame R/(gaM) m (4.108) 

is the "force" or "impetus" of the propellant.  (Sometimes also the product 
g T^mVs ) is called the "impetus" of the propellant.) 

In some cases, a modeling of e may be better than the assumption of a 
constant e. For instance, if the propellant contains a retardant then one 
could assume that the flarag tejnperature is a function of the regression 
distance, and consequently, e = e(d). ^ Of course, the modeling then involves 

averaging errors, because the local e(d) would be replaced by a function 
e(d)  of the average d. 

The factor H is defined by 

H = ^ [(e+p/J) - (e+p/p)] J/(kg.K) (4.109) 

i.e., H is the difference between the enthalpy of the gas emerging from the 
flame and of the surrounding gas, divided by the gas  temperature. 
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The approximations that effect this term are those of the equations of state 
(see Section 4 .7 .1) . 

The source term in the governing equation (4.32) Afor the pressure 
logarithm function q has as a factor of F the expression (e-e-e H)/e , where 
es(s,q) and e (s,q) are the partial derivatives of the specific Internal 
energy with respect to s and q, respectively. The factor is derived by 
formal manipulation and the approximations Involved in the derivation are 
the same as discussed above. 

4.7.9 Grain Volume and Surface. We recall the discussions in Section 
4.2.1 about the definition of the grain number function ra. The formal 
definition of the average^ grain volume function v (d) and of the average 
grain surface function s (d) should be consistent with the definition of 
m. In this section, we shall discuss definitions that are consistent with 
Eqs . (4.18) and (4.19), respectively. 

For convenience, we repeat the pertinent equations and definitions in 
this section. Our goal is to find such functions m, v , s , that satisfy 
the following set of relations 

d(t,x) = -L /  g d dS   . (4.110) 

*       P 
dv (d) 

P * 
*-= " sD(d) , (4.111) 

dd      p 

m(t,x) s (d) - / g dS   , (4.112) 
1      S 

P 

m(t,x) v (d) =/ (1-B) g dV . (4.113) 
P     V 

We found in Section 4.2.1, thaj^ such functions in general do not exist and, 
therefore, suggested to define m by either of the following two equations: 

m = I     {— /  g ds}    , (4.114) 
1=1    pi   s nv 

p 

or 

*   m  1 m = I   {— v / v g dV}   . (4.115) 
1=1 pi vinv 
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Once ra is defined, then one can define either s  or Vp by Eqs. (4.112) or 

(4.113), respectively, and find the other function from Eq. (4.111). 

* 
The approximations involved are, first, due to the assumption that m, 

as defined, is independent of d.   The accuracy of the approximation is 

improved if the weight function g is almost constant over the averaging 
volume.   A second approximation is due to the assumption that s  or v , 

defined by Eqs. (4.112) or (4.113), respectively do not depend explicitly on 

t and x.  Again, an almost constant g may improve the accuracy of this 

approximation. 

The modeling of the functions v and s practically is done at a limit, 

assuming constant g, and identical particles. In this case, the functions 

simply represent a single particle. 

If there is a variation of particle sizes within the averaging volume, 
then by either of the described formalisms one obtains average n  and s 

that are slanted towards the larger particles.   Investigations of the 

significance of this bias have not been done for interior ballistics 

problems. 

4.7.10. Grain Surface Heating Bate. The grain surface heating rate 

enters the governing equation, Eq. (4.32), for the grain surface temperature 

~ - - u'VT + <T>  . (4.116) 
0 t 

The term <T> is the correlatioa model for 

f =4 ( lr^ds    • (4-117) 

p 

i.e., for the average rate of change of the surface temperature. The change 

is related to the heat flux to the particles, e, discussed in Section 

4.7.4.  Therefore, the model <T> should be consistent with the model <e>. 

like the grain surface and grain volume functions, the surface 

temperature model function is usually established by considering the 

limiting case of identical grains, i.e., by treating a single grain. 

Typically, if the grain has a simple geometry, one calculates the 

temperature field within the grain corresponding to the energy transfer 

<e>. This involves the solution of a differential equation that is valid 

within the grain and the determination of the corresponding surface 

temperature. However, the solution of Eq. (4.116) is the surface 

temperature itself and the temperature field within the grain is not needed 
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(if a model <T> is available. Once the surface temperature is known, it is 
used to determine the energy transfer at the next time step or the 
commencement of Ignition. This type of calculation is used if one is 
particularly interested in the ignition process. After ignition, all heat 
transfer is assumed to be zero, because then the energy flow phenomena are 
dominated by the combustion and the associated heat 
release. The continued heating of the grains is assumed to be of no 
consequence for the combustion. 

In order to illustrate the relation between <T> and the heat transfer 
from the gas to the particle, Section 4.7.4, Eq. (4.77), we consider a very 
simple model in which the temperature in each grain is assumed to be 
uniform.    (The  model  is  not  recommended  for  simulation  of  interior 
ballistics, but it shows the salient features of the relation.)  Let c be 
the specific heat of the particle material.  Then the heat capacity of one 
particle is c v p, (J/K), and the relation between the energy transfer •     p .p 
models <e> and <'r> is 

JL        JL        JL 

m c pv  <T>  - <e>SG . (4.118) 

From Eq. (4.118) and expression (4.77), Section 4.7.4, the model for the 
heat conduction between the gas and particles can be written in terms of <T> 
as 

* 
m 

particle " ^T VG L
 VV 

m  r      • n 
Particle = ^f ^ [ C.PV <T>]    • ^-119) 

The important result is the existence of a relation like Eq. (4.118) between 
<T> and <e>. It would be replaced by a different relation if the heat flow 
within the particle were taken into account, as described above. In that 
case, the expression in the brackets in Eq. (4.119) would be changed 
correspondingly. 

5.  SUMMARY AND CONCLDSIONS 

Interior ballistics models are mostly based on engineering 
approximations and insight, like Lagrange's model. Alternatively, one can 
assume that the gas and particles locally satisfy all conservation 
equations, and obtain the model by an averaging process. In this report, we 
follow the latter approach and present a complete mathematical derivation of 
weighted volume averaged equations including all error terras, sufficient 

conditions for the necessary differentiability of the average variables, and 
regions of definition of the average variables.   Initial and boundary 
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conditions that are consistent with the volume averaged equations are 
discussed.   Correlations that are used to close the system of partial 

differential equations are examined.   Some of  these correlations are 

different from those commonly used in interior ballistic applications. 

The average governing equations that are derived in this report model 
the transient effects of viscosity, heat conduction, and turbulence in the 

compressible gas phase; the Ignition, intergranular stress, and burning in 

the incompressible solid phase; and the corresponding interactions between 

the phases, e.g., drag, heat transfer, and source terms. Turbulence is 

defined in terms of volume averages with only elementary models presented 

for completeness of the report. In the average model, quantities appear 

that are defined only on the surfaces of the grains. We show that these 

quantities satisfy a general partial differential equation. The 

relationships between the volume average equations and the local equations 

for Individual phases are discussed as the volume approaches zero. Because 

these equations must be solved via a computer, an appropriate form and 

choice of dependent variables for numerical solution are discussed. Thus, 

this report presents a complete and consistent mathematical model of 

interior ballistics for non-reacting burning particle-gas flows. 

The exposition of the theoretical basis of averaged equations permits 

us to draw the following conclusions: 

First, the proper averaging domain is a finite volume that is larger 
than the propellant grains. Line and surface averaging cannot be used 

because the corresponding averages do not have the necessary 

differentiability properties. Infinite volume averaging is not appropriate 

for interior ballistics (or other confined flows) because in such a volume 

the phases do not occupy complementary spaces. Time averaging is not 

applicable in interior ballistics because of the unsteady and rapidly 

changing flow conditions, including moving boundaries. 

Second, the average equations are valid only for cases where the 

averaging volume consists of gas and particles or just gas and where the 

local functions have no discontinuities within their respective domains. 

Therefore, average governing equations are not suitable for describing flows 

with shocks, contact discontinuities, etc. On the other hand, by a proper 

formulation of the governing equations, we obtain a system that can be 

solved numerically without explicitly following the boundaries of regions 

without particles. 

Third, the average equations are not valid in the boundary region, the 

thickness of which is equal to a radius of the averaging volume. 

Consequently, the formulation of proper boundary conditions is problematic, 

and has not been solved satisfactorily. (We do not consider ad hoc 
treatments of special cases an adequate solution of the general problem.) 

Also, resolution of interior ballistics boundary layers based on volume 
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average two-phase equations is only possible in exceptional cases, when 

particles are smaller than the typical boundary layer.  The study of two- 

phase flow fields with small additive particles that are associated with 
wear and erosion of gun tubes may be such as exceptional case. 

Fourth, one-dimensional interior ballistics models based on volume 

averaging are less problematic than two-dimensional models, because the 

averaging volume occupies a finite thickness cross-section of the tube and 

is large compared to the particles. The only problems with such models are 

the formulation of boundary conditions at the breech and projectile. 

Fifth, a mathematical basis for two-dimensional interior ballistic 
models could possibly be obtained by an extension of the theory of average 

equations. Such an extension may be possible by generalizing to a variable 

volume averaging or by using statistical averages instead of volume 

averages. The first approach will alleviate some problems, but it cannot 

remove the basic cause of problems in two-dimensional modeling: the 

particle sizes that are large compared to the gas boundary layer. The 

second approach (statistical averaging) has not been tried successfully for 

two-phase flows. There the encountered problems are mathematical, requiring 
a major investment in the development of the theory. Also, it is not 

certain if the problems associated with boundary conditions will be 

alleviated by statistical averaging. 
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App. A . 

APPENDIX A 

GOVERNING EQUATIONS FOR AXIALLY SYMMETRIC FLOWS IN CYLINDRICAL COORDINATES 

This appendix contains a list of the governing equations in component 

form in cylindrical coordinates for the case of axially symmetric flow. The 

subscripted variables denote the components of a vector and not the 

derivative of these variables. All derivatives are written in a non- 

abbreviated form. The listed equations are in a form which is compatible 

with Eq. (4.32), Sect. 4.3. The components of the gas average velocity and 

the particle average velocity are 

u = (ur, u9, uz)     ,  (m/s)    , (A.l) 

*   *  *  * u = (ur, uQ, uz )    ,  (m/s)    , (A.2) 

where the subscripts r, 9, and z refer to the radial, angular, and axial 

coordinate directions, respectively. The components of the gradient of a 

scalar f are 

^ = {(|f)r.(0]9,(||)z}    . (A.3) 

The divergence  of  a vector F =  (Fr,  Fg,  Fz)  is 

.   3(rF   )       3F 
VF  ml T    +—1        . (A.4) 

r      3r 9z 

The independent variables are time t, radial position r, and axial 

position z. The dependent average variables which are computed from the 

governing partial differential equations are: the specific entropy s, the 

pressure logarithm function q, the radial gas velocity u , the 

circumferential gas velocity u., the circumferential particle velocity u., 

the axial particle velocity u , the number of particles within the averaging 

volume m, the regression distance d, and the surface temperature of the 

particles T. 

The entropy equation is 
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App.   A,, 

|l=-u|5-u|f + £=B+Hr+<&+f (A.5) 
3t r9r z3z      pT 

where p, p, T, H, T, are given by Eqs. (B.6), (B.4), (B.2), (B.27), and 
(B.26), respectively.  The expression for B is 

*     * 

.  lj/i ^ r 1 3(rUr) L 
3uz1   ,    * , a(l-a)  ,        *. 8(1-0), 

(A.6) 

and the porosity a is given by Eq. (B.1).  The dissipation function $ is 

* = ^*(E) +i^*T + <t)>   , (A.7) 

where 

,    9u 2   u 2  3u 2  u 9u   3u 3u   u 3u ♦(« -4. [(^)  +(^ ^ -(^^JJ^J^)] 

ua  ,   3u   3u „   3u 9 

3u   u   3u n 

L3r   r   32 J 

and u, X, <(t)>, and •_, are given by Eqs. (B.7), (B.8), (B. 13), and (B.35), 
respectively.  The heat conduction term f is given by Eq. (B.15) as 

gas   particle   turb I 

where 
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1 r 1 3 r        3T>, . 3 r ^ 3T,n 

^turb =^f[7lT^raKTli ^h^T^ 

App, A 
(A.10) 

(A. 11) 

9a  9 9a ^ - i^- fnc (T -T) — - — fie (T -T) —11 
r 9r ^T^1! ; 9r  9z ^T^i l}  9zJJ 

41 particle' K are given by E<ls' (B'17). (B« ^. respectively, and KT, TJ are 
discussed near Eq. (B.36). 

The pressure logarithm function equation is 

9 (ru )  9u 
la q       9q     9q  p  r 1  r_    z  9e 1 >, 

9q 

9e ^       9s.     9s 9p 

(A.12) 

9q 3q 

where p , e, T, B, e, H, F, *, and * are given by Eqs. (B. 4), (B.3), (B.2), 
(A.6), (B.28), (B.27), (B.26), (A.7), and (A.9), respectively. 

The radial gas velocity equation is 

2 
9u 

1 

9T 

3u 9u UQ j^    1   n _ * 

r9r z9z r      dqp9r       vrr 

(A. 13) 

(1-4) 
^^drag^r + ^vlsJr + ^ur^r 

where 
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,       r, _ 3u u        3u .   . 8u (A        ]     =i_||_[ct     2 (2       r __r _      z^   +a^l|_ z^ 
*•   viscrr      ap   l8r L       3 v     3r r        9z  ^ ^r 3r      r 9z  Ji 

(A.14) 

«     9u   9u        ^  u 
+ k War+ jr" + ** yr» 

and p, p, T, a, u, and X  are given by Eqs. (B.6), (B.4), (B.26), (B.l), 
(B.7), and (B.8), respectively.  The radial component of the drag (A,  ) 
is given by the radial component of Eq. (B.20).  The radial component of 
acceleration due to turbulence CAt v)  could be given by the radial 
component of Eq. (B.34) which is Eq. (A. 14) with \i   and X replaced by yT and 

T' 

The circumferential gas velocity equation is 

9ue       9uQ     9uQ  urue      * 

;rr= - ur 9^- - uz 9^- - -T- - (vVr 

(A.15) 

a  ^dragV ^visc^ + ^turb^ 

where 

and a, r, y, X, and p are given by Eqs. (B.l), (B.26), (B.7), (B.8), and 

(B.4), respectively.  The circumferential component of the drag (Adrag^fi is 

given by the circumferential component of Eq. (B.20).  The circumferential 
component of the acceleration due to turbulence (At _i.)fl could be given by 
the circumferential components of Eq. (B.34) which is Eq. (A.16) with y and • 
X replaced by p and X . 

The axial gas velocity equation is • 

3UZ       9UZ     dUz       dp 1 9q   . 
Fr=-Ur 9-^-uz 9ir-d?p 9ir-(u

z-
u

z
)r , N (A.17) 

r~  ^drag^ + ^visc^ + ^turb^  ' 
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where 

3u        9u 8u        3u 

(Aviso). - ^1 lh MjT + ^1 + ^ lal1 + 5^1 

(A. 18) 

„ 3u 3u u 3u 3u u 

and p, p, T, a, y, and X are given by Eqs. (B.6), (B.4), (B.26), (B. 1), 
(B.7), and (B.8), respectively. The axial component of the drag (Ad )z is 
given by the axial component of Eq. (B. 20). The axial component of the 

acceleration due to turbulence (Aturb^z could be given by the axial 
component  of  Eq.   (B.34)  which is  Eq.   (A.18)  with y  and X  replaced by y- and 

XT- 

The components of the solid phase velocity equation are the radial 
solid phase velocity equation 

9u     4.3u    .3u   u2  A      ,  i„ r_  *   r_*   r   9  _dpj.^q.p_,    ^   ,.     . 
Tt"      Ur3T"  uz37"r~dq*3r* ^Adrag;r *  ^stress^r  ' 

P     P (A.19) 

the circumferential solid phase velocity equation 

* *        * * 
8u0        *   8ue     *   9u9     urue +P    rA      , (A 7(U 
3T-= -Ur^r-UZ3^--r-

+*  (Adrag)e   ' (A-20) 
P 

and the axial solid phase velocity equation 

* *       * 
3u *9u *^u do   13a 
3T£=-Ur37i"U

Z3^£'di"*^+*  (Adrag)Z
+  ^tvessh ^'2^ 

P     P 

where p and p are given by Eqs. (B.6) and (B.4), respectively. The density 
of the solid phase p is assumed constant. The components of the 
accelerations due to drag, Adr , and intergranular stress, Ast.ress, are 
given by the components of Eqs. (B.20) and (B.23), respectively. 

The particle number equation is 

3m    1 3  , **    3   ** ,. 00. — = - — -r— (rmu ) - — (mu )    . (A.22) 
3t    r3r    r   3z   z 
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The regression distance equation Is 

8d    *3d  *3d 

where the burning rate correlation <d> is given by Eq. (B.25). 

The surface temperature equation is 

* * * 
3 T *    3 T      *    3 T    • . 
3T=-Ur37-U

Z37<T> ' ^W 

where the  correlation <^> for  the  rate of  change of grain surface 
temperature is discussed in Section 4.7.10. 
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App. B 
APPENDIX B 

CORRELATION MODEL FORMULAS 

This appendix contains a list of correlation model formulas. The 

formulas are discussed In detail In Section 4.7. The terms listed In this 
appendix are in a form compatible with Eq. (4.32), Section 4.3, and Appendix 

A. 

The porosity or gas volume fraction (Section 4.2.1) is given by 

a = 1 - vp(d)m/VG (B.l) 

The equations of state (Section 4.7.1) fire 

T(p,s) = TRI-Jj-J       exp [- — sj    ,  K 

:  i T 
Y-l M 

CRT.  v 
= ^p + ^ 

= Y£J- 
P l-np 

,  J/kg  , 

kg/m3  , 

,  m2/s2  , 

(B.2) 

(B.3) 

(B.4) 

(B.5) 

where R = 8.3143 J/(mol«K) is the universal gas constant, M (kg/mol) is the 

molar mass and n (nrVkg) is the covolume. The pressure logarithm function q 
is defined by (Section 4.2.2) 

q - qi[ln(p/p1) + l]  ,  Pa,  or   p = p^xp (-3 l) , Pa . 

(B.6) 

The shear viscosity coefficient p and the bulk viscosity coefficient 
X are (Section 4.7.2) 

T1.5 
v =lJo + ui^-rT 

1.5 
A = A + ^ T—r-s; o   1 X„ + T 

Pa* s  , 

Pa* s 

(B.7) 

(B.8) 

99 



App. B 
The acceleration by viscosity Is modeled t^y (Section 4.7.2) 

Avl8C - ^-V • {a[2wE + (X -|y) (trace E) l]}.  m/s2 ,      (B.9) 

where E Is the strain rate tensor computed using the average velocities, 
i.e., , 

E = 0.5 (Vu + (Vu)T)    . (B. 10) 

The heat dissipation function term is modeled by (Section A.7.3) 

$ = ^$(E) + <$> +^0T    ,  W/(kg.K)   , (B. 11) 

where 

♦ (E) = 2u trace(E2) + (X - -j M) (trace E)2   ,  W/m3 , (B. 12) 

<$> -^ lu-Sl^^f^)273^2^ +ix)    .  W/(kg.K) . (B.13) 

and $„ is given by Eq. (B.35). 

The thermal conductivity coefficient K is modeled by (Section 4.7.4) 

T1.5 
<  = K    + < ,  W/(m.K)   . (B. 14) 

O     1 K_ + T 

The heat conduction term in the governing equations is modeled by (Section 
4.7.4) 

V   =y + *   t4 i  + ¥fc  u    ,  W/(kg. K)   , (B. 15) gas   particle   turb   .   '\ s /   » 

where 

V8=^fV-(a KVT) (B-16) 

100 



and 

particle I 
7C 

 ^ T^ s  [h  (T-T) + h  (T-T)l apT VG    pL   c r J 

App.   B 

before ignition 

after Ignition 

(B. 17) 

with 

h„ = 
D II 
P 

+ o.2 {-L-^ R (K2P)
2
|U-U|

2
^ 1/3 

*     J 
yDp/2 

and 

hr = e aSB(T+T) (r+r) 

, W/(m2.K) 

, W/Cm^.K)  . 

(B. 18) 

(B.19) 

* —8    —2 —4 
In Eq. (B.19), e is the particle emissivity, ^gg = 5.67032. 10 0 W.m K  is 
the  Stephan-Boltzman  constant,  and  T is the  average  grain  surface 
temperature.  The turbulent heat flux within the gas, ^txxT^  is given by Eqs. 
(B.36) and (B.37). 

The   acceleration    term   due   to   the   drag   between   gas   and   particles    is 
modeled by  (Section  4.7.5). 

drag 

where 

\ 
for a<0.65 

65<a<0.9 
^"O-^Vynolds +  (0-9-a)AErguJ       for  ^^ 
A_ for 0.9<a 
Reynolds 

(B.20) 

Ergun 

3. 

(u-S) ^-\K{ 1.75   |u-u|  +   150  (1-a) -\-\ v    3     2 
P      a PD 

m/s^ 
(B.21) 
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and 

*  a ^ 
AReynold8 = ^^  y    ^0'2   lU"Ul + 12 ^    •  m/s2  '      (B-22) 

P pDp 

The acceleration term due to Intergranular stress is modeled by (Section 
4.7.6) 

Stress = " ^ ^-VCl-a)   ,  m
2/8

2  . (B.23) 

where a(a) is a    sound speed function for the particulate phase.   The 
function is modeled by 

a, - a   a? - a 
a^J ) ( ] for a < a < a0 A     .  sp^a - a J   Ka2 - a .J o 2 

a(a) = j •        (B.24) 
0 for a2 < a 

The burning rate is modeled by (Section 4.7.7) 

* 
(0                                                    for  <T> < T,     .,   4 

<d>=                            B                                             ^ in«ition         .            (B.25) 
I         Bo +  BlP 2           .       m/s,     for <r> > Tignltion 

The  source  term T  is   (Section  4.7.8) 

r =ip wsp<s>     •    1/8    • (B-26) 

The enthalpy factor H of the source term (Section 4.7.8) is defined by 

H = - [(e + p/p) - (e + p/p)]    ,  J/(kg.K)   , (B.27) 

where e is 

- 
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e = 1 R T 
Y-l M flame y-l 0a~p g-I J/kg 

App. B 
(B.28) 

with g = 9.80665 m/s2 being the standard acceleration. 
* 

The particle geometry enters the equations as the four functions vp(d), 

s (d), D (d) and a (d).  We provide the formulas that define these functions 
for spherical, cylindrical, and tubular grains. 

* 
For a spherical grain with initial diameter Do one defines 

R = max   (0,   ((Do -  2d)/2) 

4      o3 

S       =    4  TT    i? MB. 29) 

ap - ir ^ 

D    =  2ff 
P 

A solid cylindrical grain may be described by its initial diameter, Do, 

and height, L  ,     Let 

fl - (D - 2d)/2 
(B.30) 

L  = L    - 2d o 

If either i? < 0 or L < 0, then the grain has been burnt.  If both quantities 

are positive, then we define 
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V  = TT LR 

sp = 22TIR(R+L) 

App. B 

a  = (2RL + TTR^)/2 , (B.31) 

D = (2R+L)/2 

A tubular grain may be defined bjr its initial height    and the initial 

outer and inner diameters, D and d , respectively.  Let 
o     o J 

R = (D - 2d)/2 
o 

r = (d + 2d)/2 
o '(B.32) 

*   * 
L =L - 2d 

o 

The grain is completely burnt if either    R-r< 0 or  L< 0.  If both of 

these quantities are positive, then the grain geometry functions are 

v = TT(-D + d ) (R-r)L/2 

sp = IT (Do + do) (R-r+L) 

ap =  (2RL + Tr(R
2 - r2))/2 (B.33) 

Dp = (2R+L)/2 . 

We consider a detailed study of turbulence models for interior 

ballistics flows to be outside the scope of this report. Hence, the 

correlation models are quite elementary and are listed in this report only 

for completeness. The acceleration by the gas phase turbulent stress tensor 

^turb and the turbulent heat_dissipation function $ , could have the same 
form as Avlsc (Eq. (B.9)) and $(£), (Eq. (B.12)), respectively, but 

different viscosity coefficients, that is, 
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\urb ^^W2^ + ^T"lPT^traCe ^   I]} .  Ws2       ,   (B.34) 

$T        = 2 yT trace  (E2)  + 0 T " | H T)   (trace  E) 2 , W/m3  , (B.35) 

where \i     and XT denote the viscosity coefficients for turbulent flows. The 
manner in which these coefficients are determined strongly depends on the 
particular turbulence model one uses and, hence, will not be given. As 
discussed in Section 4.7.6, the solid phase turbulent stress tensor n„ is 

IT i 
set to zero. The turbulent heat flux vector Qnr, is modeled by Ishii and 
Gibeling et al.5 as 

Va QT= -KT[VT-^ (^ - T)] W/m^ (B.36) 

where T. is an average temperature on the interface (a function of T and t) 
and K is given by an algebraic formula involving an effective viscosity and 
Prandtl number.  The corresponding model of Ytur^ in Eq. (B.15) is 

turb ^fv-(aV W/(kg.K) (B.37) 
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LIST OF SYMBOLS 

This list contains symbols that are frequently used in the report. 
Symbols that are defined and used only locally are not included in the list. 

Function symbols in general indicate average quantities. A tilde over 
a function symbol is used to indicate the local value of a function. An 
asterisk over a symbol indicates that it represents a property of the 
propellant grains. 

sp 
* 
a 

P 

adrag 

Ergun 

Reynolds 

A 
stress 

* 
d 

s 

<d> 

* 
D 

es'eq 

- 

- 

sound speed in gas, m/s 

sound speed of particle material, m/s 

sound speed in the particulate phase, m/s 

2 
average frontal area of a particle, m 

acceleration term due to drag, m/s 

2 
Ergun correlation for A(jrag, m/s 

2 
Reynolds correlation for A(jra , m/s 

o 
acceleration term due to intergranular stress, m/s 

specific heat capacity at constant volume, J/(kg»K) 

specific heat capacity at constant pressure, J/(kg«K) 

regression distance, m 

stationary burning rate, m/s 

burning rate correlation function, m/s 

drag force correlation, N 

average particle diameter, m 

specific internal energy, J/kg 

e at flame temperature, J/kg 

partial derivatives of e, K and nr/kg, respectively 
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<e> - correlation for surface averaged heat flux between the 
particles and gas, W/m 

E - strain rate tensor, l/s 

g - averaging weight function 

H - specific enthalpy difference (4.109), J/(k.g« K) 

I - identity tensor of second order 

Ip - "force" or impetus of the propellant, m                        » 

I - diameter of averaging volume, m 

m - number of grains in averaging volume 

m - weighted number of grains in averaging volume 

M - molar mass, kg/mol 

nSp - unit outward normal with respect to the gas on S 

nsv - unit outward normal to Sv 

p - pressure. Pa 

Pq - derivative of the function p(q) 

Q - gas phase heat conduction, W/m2 

QT - gas phase turbulent heat flux, W/m2 

q - pressure logarithm function, Eq. (4.28), Sect. 4.2.2, Pa 

r - radial coordinate, m 

R - universal gas constant, 8.3143 J/(mol«K) 

s - specific entropy, J/(kg«K) 

sp " average surface area of a single grain, m2                    I 

Sp - union of all grain surfaces In V 

SG - weighted area of S , m2 

Sv - surface of averaging volume V 
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t 

T 

T 

* 
T 

flame 

<T> 

u 

ur,ue,uz 

* 
u 

* * * 
VVuz 

sp 

VP 

V 

VG 

6 

Y 

r 

r 

time, s 

gas temperature, K 

flame temperature, K 

grain surface temperature, K 

correlation  for  rate  of  change  of  grain  surface 
temperature, K/s 

gas velocity, m/s 

the  radial,  circumferential, and axial  components  of 
u, m/s 

particle velocity, m/s 

the radial, circumferential, and axial components of, 
u, m/s 

velocity of a point of S , m/s 

3 
average value of the volume of a single particle, m 

averaging volume 

3 
weighted value of V, m 

spacial coordinate vector, m 

axial coordinate, m 

surface element metric 

gas volume fraction (porosity) 

phasic function (Section 2) 

ratio of specific heats 

source term, (4.33), Section 4.3, 1/s 

SG<d>/VG, 1/s 

S^r. II. 
P 
surface coordinate vector 
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T\ - covolume in equation of state, m /kg 

K - thermal conductivity coefficient, W/(in«K) 

X - bulk viscosity coefficient. Pa*s 

y - shear viscosity coefficient, Pa»s 

C - spacial coordinate vector, m 

11 - viscous stress tensor. Pa 

IIT - gas phase turbulent stress tensor. Pa 

* 
11 - intergranular stress tensor, Pa 

* 
IT - solid phase turbulent stress tensor. Pa 

o 
p - gas density, kg/m 

* / ■? p - particle density, kg/m 

P„. P partial derivatives of p(s,q), (kg/m )•(kg* K/J), and 
s /m , respectively 

ij) - function describing a gas property. Section 2 

* 
<)) - function describing a particle property. Section 2 

$ - dissipation term, W/(kg*K) 

$ = $ L - dissipation function, W/m3 

$T - gas phase turbulent dissipation function, W/m 

<$> - dissipation correlation term, W/(kg*K) 

♦ , - p T $, W/m3 

^(t,x,5) - general function. Section 2 

f - heat conduction term, W/(kg*K) 

ygas ~ lieat conduction due to gas conductivity, W/(kg*K) 

^particle ~ heat conduction due to heat loss to particles, W/(kg*K) 

^turb ~ turbulent heat conduction, W/(kg*K) 
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